Summary

卵巢癌组织线粒体的制备与控制卵巢组织进行定量蛋白质组学分析

Published: November 18, 2019
doi:

Summary

本文提出了一种将微分速度离心与密度梯度离心相结合,将线粒体从人类卵巢癌组织中分离出来并控制卵巢组织的定量蛋白质组学分析方案,生成人类卵巢癌线粒体蛋白体的高通量和高可重复性定量蛋白质组学分析的高质量线粒体样本。

Abstract

卵巢癌是一种常见的妇科癌症,死亡率高,但分子机制不明确。大多数卵巢癌在晚期被诊断,这严重阻碍了治疗。线粒体变化是人类卵巢癌的标志,线粒体是能量代谢、细胞信号和氧化应激的中心。深入了解卵巢癌中线粒体蛋白酶与控制卵巢组织的变化,将有助于深入了解卵巢癌的分子机制,以及发现有效可靠的生物标志物和治疗靶点。这里介绍了一种有效的线粒体制备方法,结合相对和绝对定量 (iTRAQ) 定量蛋白质组学的等值标记,用于分析人类卵巢癌和控制线粒体蛋白酶, 包括差分速度离心、密度梯度离心、线粒体样品质量评估、蛋白消化与胰蛋白酶、iTRAQ 标签、强阳离子交换分馏 (SCX)、液相色谱 (LC)、串联质谱 (MS/MS),数据库分析和线粒体蛋白的定量分析。许多蛋白质已被成功识别,以最大限度地覆盖人类卵巢癌线粒体蛋白酶,并实现人类卵巢癌中不同表达的线粒体蛋白特征。

Introduction

卵巢癌是一种常见的妇科癌症,死亡率高,但分子机制1,2不清楚。大多数卵巢癌在晚期被诊断,这严重阻碍了治疗。线粒体变化是人类卵巢癌的标志,线粒体是能量代谢、细胞信号和氧化应激3、4、5、6、7的中心。深入了解卵巢癌中线粒体蛋白酶与控制卵巢组织的变化,将有助于深入了解卵巢癌的分子机制,以及发现有效可靠的生物标志物和治疗靶点。线粒体代谢已被提出并确认为癌症治疗的目标,抗线粒体治疗最终可能非常有利于预防癌症的复发和转移。个体代谢分析也已经实践为癌症分层和预测策略的有用工具9,10。

这项研究的长期目标是开发和使用定量线粒体蛋白质组学方法来研究卵巢癌,以澄清卵巢癌与控制卵巢组织之间的线粒体蛋白质组变化,以及其分子网络从系统多组分角度11、12的变化,从而发现线粒体靶向分子生物标记物13,以澄清卵巢癌的分子机制,预测,并个性化治疗卵巢癌患者。相对和绝对定量(iTRAQ)标签3、4的等值标签是定量线粒体蛋白质变化的有效方法。从人类卵巢癌中制备高质量的线粒体样本和控制卵巢组织是iTRAQ定量分析线粒体蛋白酶3的先决条件。线粒体制剂与iTRAQ定量蛋白质组学已成功地用于有关人类卵巢癌线粒体蛋白质组的长期研究项目,包括建立线粒体蛋白质组参考图3,分析微分表达线粒体剖面4、14和翻译后修饰,包括磷酸化,这已经导致发现重要的信号通路网络变化在人类卵巢癌5,包括能量代谢的变化4,脂质代谢,和米托巴细胞通路系统3。

此前的研究发现,微差速离心与密度梯度离心相结合是从人类卵巢癌中分离和纯化线粒体,控制卵巢组织3、4、5、14的有效方法。iTRAQ 标签与强阳离子交换 (SCX) -液相色谱 (LC)-串联质谱法 (MS/MS) 相结合,是检测、识别和量化制备线粒体样本中的蛋白质的关键技术。

这里,描述了线粒体制备与iTRAQ定量蛋白质组学的详细方案。这些已经成功地用于分析人类卵巢癌组织线粒体。这些方案包括样品制备、差分速度离心、密度梯度离心、线粒体样品的质量评估、胰蛋白酶的蛋白质消化、iTRAQ标记、SCX分馏、LC、MS/MS、数据库搜索以及线粒体蛋白的定量分析。此外,该协议很容易翻译分析其他人体组织线粒体蛋白酶。

Protocol

该协议使用卵巢组织样本,包括卵巢癌组织(n = 7)和正常对照卵巢组织(n = 11)。本议定书3、4、5号方案经中南大学湘雅医院医学伦理委员会批准。 1. 从人类卵巢癌组织制备线粒体 通过混合 210 mM 甘醇、70 mM 蔗糖、100 mM 氯化钾 (KCl)、50 mM Tris-HCl、1 mM 二胺四乙酸 (EDTA)、0.1 mM 乙二醇二(2-氨?…

Representative Results

从卵巢癌组织和控制卵巢组织对线粒体的制备有差异。这项研究发现,从卵巢癌组织制备线粒体比从控制卵巢组织3,4容易得多。必须对从控制卵巢组织制备线粒体的方案进行一些改进。首先,在组织均质化之前,有必要在添加到切碎控制组织的PBS溶液中加入8 mL的0.05%胰蛋白酶/20 mM EDTA,随后在室温下消化30分钟,在200 x g?…

Discussion

线粒体改变是卵巢癌的标志。从人类卵巢癌中制备高质量的线粒体样本,控制组织用于大规模定量蛋白质组学,有助于深入了解卵巢癌发病机制和线粒体分子网络变化中的线粒体功能,有助于阐明其分子机制,为后续发现基于线粒体4、5、8的目标疗法和有效的生物标志物。微分速度离心与密度梯度离心相结合,有效地从人类卵…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了湖南省百人计划(至X.Z.)、湘雅医院人才引进基金(XZ)、国家自然科学基金(第81572278号、81272798至XZ)的资助,中国”863″计划资助。项目(授权号2014A020610-1至XZ)和中国湖南省自然科学基金(批号14JJ7008至XZ)。X.Z. 构思了本稿件的概念,获取了 iTRAQ 定量蛋白质组学线样本的数据,编写和修订了手稿,协调了相关工作,并负责财务支持和相应的工作。H.L.制备线粒体样本。S.Q. 参与了部分工作。X.H.Z参与编写和编辑英语。N.L. 分析了 iTRAQ 蛋白质组学数据。所有作者都批准了最终的手稿。

Materials

BCA protein assay kit Vazyme E112 BCA protein assay kit is a special 3-component version of our popular BCA reagents, optimized to measure (A562nm) total protein concentration of dilute protein solutions (0.5 to 20 micrograms/ml).
Bovine serum albumin (BSA) Solarbio A8020-5G Heat shock fraction, Australia origin, protease free, low fatty acid, low IgG, pH 7, ≥98%
Centrifuge XiangYi TDZ4–WS
CHAPS Sigma C9426-5G BioReagent, suitable for electrophoresis, ≥98% (HPLC) (Sigma-Aldrich)
Diamine tetraacetic acid (EDTA) Sigma 798681-100G Anhydrous, free-flowing, Redi-Dri, ≥98%
DTT Sigma 10197777001 1,4-Dithiothreitol
Easy nLC Proxeon Biosystems (now Thermo Fisher Scientific)
Ethylen glycol bis(2-aminoethyl ether)tetraacetic acid (EGTA) Sigma E0396-10G BioXtra, ≥97 .0%
Homogenizer SilentShake HYQ-3110
iTRAQ reagent kit Applied Biosystems Applied Biosystems iTRAQ Reagents–Chemistry Reference Guide, P/N 4351918A
Low-temperature super-speed centrifuger Eppendorf 5424R
Mannitol Macklin M813424-100G Mannitol is a polyol (polyhydric alcohol) produced from hydrogenation from fructose that functions as a sweetener, humectant, and bulking agent. It has low hygroscopicity and poor oil solvency.
MASCOT search engine Matrix Science, London, UK; version 2.2
Nagarse Solarbio P9090
N-hydroxysuccinimide (SDT) Sigma 56480-25G Purum, ≥97.0% (T)
Nycodenz Alere/Axis-Shield 1002424-1
Phenylmethanesulfonyl fluoride (PMSF) protease inhibitor Solarbio P0100-1ML PMSF is a protease inhibitor that reacts with serine residues to inhibit trypsin, chymotrypsin, thrombin, and papain.
Potassium chloride Macklin P816354-25G Potassium chloride, KCI, also known as potassium muriate and sylvite, is a colorless crystalline solid with a salty taste that melts at 776°C (1420 OF). It is soluble in water, but insoluble in alcohol. Potassium chloride is used in fertilizers, pharmaceuticals, photography, and as a salt substitute.
Proteome Discover 1.4 Matrix Science, London, UK
PVDF membrane Millipore 05317 It is 1 roll, 26.5 cm x 1.875 m, 0.45 µm pore size, hydrophobic PVDF transfer membrane with low background fluorescence for western blotting. It is compatible with visible and infrared fluorescent probes.
Q Exactive mass spectrometer Thermo Fisher Scientific
SCX column Sigma 58997 It is 5-μm particle size, length 5cm × i.d. 4.6mm (Supelco).
Sodium orthovanadate (V) Macklin S817660-25G Sodium orthovanadate (Vanadate) is a general competitive inhibitor for protein phosphotyrosyl phosphatases. The inhibition by sodium orthovanadate is reversible upon the addition of EDTA or by dilution.
Sucrose Macklin S824459-500G Vetec reagent grade, 99%
Thiourea Sigma 62-56-6 ACS reagent, ≥99.0%
Tris base Sigma 10708976001 TRIS base is useful in the pH range of 7.0-9.0. It has a pKa of 8.1 at 25°C.
Trypsin (cell culture use) Gibco 25200-056 This liquid formulation of trypsin contains EDTA and phenol red. Gibco Trypsin-EDTA is made from trypsin powder, an irradiated mixture of proteases derived from porcine pancreas. Due to its digestive strength, trypsin is widely used for cell dissociation, routine cell culture passaging, and primary tissue dissociation.
Urea Sigma U5378-100G powder, BioReagent, for molecular biology, suitable for cell culture

Referencias

  1. Sakhuja, S., Yun, H., Pisu, M., Akinyemiju, T. Availability of healthcare resources and epithelial ovarian cancer stage of diagnosis and mortality among Blacks and Whites. Journal of Ovarian Research. 10, 57 (2017).
  2. Gadducci, A., et al. Surveillance procedures for patients treated for epithelial ovarian cancer: a review of the literature. International Journal of Gynecological Cancer. 17, 21-31 (2007).
  3. Li, N., Li, H., Cao, L., Zhan, X. Quantitative analysis of the mitochondrial proteome in human ovarian carcinomas. Endocrine-Related Cancer. 25, 909-931 (2018).
  4. Li, N., Zhan, X., Zhan, X. The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecologic Oncology. 150, 343-354 (2018).
  5. Li, N., Zhan, X. Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics. EPMA Journal. 10, 153-172 (2019).
  6. Deng, P., Haynes, C. M. Mitochondrial dysfunction in cancer: Potential roles of ATF5 and the mitochondrial UPR. Semin Cancer Biology. 47, 43-49 (2017).
  7. Georgieva, E., et al. Mitochondrial dysfunction and redox imbalance as a diagnostic marker of “free radical diseases”. Anticancer Research. 37, 5373-5381 (2017).
  8. Sotgia, F., et al. A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Cell Cycle. 17, 2091-2100 (2018).
  9. Lee, J. H., et al. Individualized metabolic profiling stratifies pancreatic and biliary tract cancer: a useful tool for innovative screening programs and predictive strategies in healthcare. EPMA Journal. 9, 287-297 (2018).
  10. Zhan, X., Long, Y., Lu, M. Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application. Journal of Proteomics. 188, 30-40 (2018).
  11. Lu, M., Zhan, X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA Journal. 9, 77-102 (2018).
  12. Hu, R., Wang, X., Zhan, X. Multi-parameter systematic strategies for predictive, preventive and personalised medicine in cancer. EPMA Journal. 4, 2 (2013).
  13. Cheng, T., Zhan, X. Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA Journal. 8, 51-60 (2017).
  14. Zhan, X., Zhou, T., Li, N., Li, H. The differentially mitochondrial proteomic dataset in human ovarian cancer relative to control tissues. Data in Brief. 20, 459-462 (2018).
  15. McMillan, J. D., Eisenback, M. A. Transmission electron microscopy for analysis of mitochondria in mouse skeletal muscle. Bio-protocol. 8, e2455 (2018).
  16. Paul, P. K., et al. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. Journal of Cell Biology. 191, 1395-1411 (2010).
  17. Pascual-Ahuir, A., Manzanares-Estreder, S., Proft, M. Pro- and antioxidant functions of the peroxisome-mitochondria connection and its impact on aging and disease. Oxidative Medicine and Cellular Longevity. 2017, 9860841 (2017).
  18. Schrader, M., Costello, J., Godinho, L. F., Islinger, M. Peroxisome-mitochondria interplay and disease. Journal of Inherited Metabolic Disease. 38, 681-702 (2015).
  19. Bartolák-Suki, E., Imsirovic, J., Nishibori, Y., Krishnan, R., Suki, B. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. International Journal of Molecular Sciences. 18, 1812 (2017).
  20. Rezaul, K., Wu, L., Mayya, V., Hwang, S., Han, D. A systematic characterization of mitochondrial proteome from human T leukemia cells. Molecular & Cellular Proteomics. 4, 169-181 (2005).
  21. Zhan, X., et al. How many proteins can be identified in a 2DE gel spot within an analysis of a complex human cancer tissue proteome?. Electrophoresis. 39, 965-980 (2018).
  22. Zhan, X., Li, N., Zhan, X., Qian, S. Revival of 2DE-LC/MS in proteomics and its potential for large-scale study of human proteoforms. Med One. 3, e180008 (2018).

Play Video

Citar este artículo
Zhan, X., Li, H., Qian, S., Zhan, X., Li, N. Preparation of Mitochondria from Ovarian Cancer Tissues and Control Ovarian Tissues for Quantitative Proteomics Analysis. J. Vis. Exp. (153), e60435, doi:10.3791/60435 (2019).

View Video