Summary

大鼠关节内注射单碘乙酸酯诱导的骨关节炎疼痛模型

Published: May 20, 2020
doi:

Summary

本研究描述了大鼠关节内注射单碘乙酸酯的方法,并讨论了由此产生的疼痛相关行为和组织病理学变化,为今后的应用提供参考。

Abstract

目前的骨关节炎(OA)动物模型可分为自发模型和诱导模型,两者都旨在模拟人类OA的病理生理变化。但是,疼痛作为OA晚期的主要症状,影响患者的日常生活,可用的模型并不多。单碘乙酸(MIA)诱导模型是应用最广泛的OA疼痛模型,主要用于啮齿动物。MIA是甘油醛-3-磷酸脱氢酶的抑制剂,可导致软骨细胞死亡,软骨变性,骨赘和动物行为的可测量变化。此外,在MIA诱导的模型中可以检测到基质金属蛋白酶(MMP)和促炎细胞因子(IL1 β和TNF α)的表达变化。这些变化与人类OA病理生理状况一致,表明MIA可以诱导可测量和成功的OA疼痛模型。本研究旨在描述大鼠关节内注射MIA的方法,并讨论由此产生的疼痛相关行为和组织病理学变化。

Introduction

骨关节炎(OA)是世界上最常见的关节疾病,估计影响成人10-12%的人口1。最普遍受累的关节是膝关节,OA在老年人中发病率较高,尤其是女性2。作为一种慢性疾病,OA在几十年内逐渐发展为关节衰竭,症状包括软骨丢失,滑膜炎症,骨癣菌病,功能下降和慢性疼痛3。根据世界卫生组织(WHO)的数据,OA是女性中第四大最普遍的疾病,也是男性中第八大最流行的疾病。到2020年,OA可能成为人类第四大致残性疾病4。然而,目前可用的OA疗法仅解决症状,并延长关节置换手术的时间5。

人类患者的自发性OA往往需要很长时间才能产生关节相关疼痛等临床症状6。在OA的早期阶段,疼痛通常是间歇性的,并且随着疾病的进展变得更加频繁和严重,使其成为患者的主要主诉7。因此,在过去的半个世纪中,已经开发了广泛的OA疼痛动物模型来促进疼痛缓解疗法。OA模型通常分为自发模型和诱导模型。自发模型包括自然发生的模型和转基因模型,它们可以更密切地模拟人类原发性OA的过程8。诱导模型一般可分为两类:1)手术或其他创伤诱导的创伤后OA;或2)关节内注射软骨毒性或促炎物质3。这些模型为OA的病理生理学研究奠定了基础,并为开发减轻疼痛和增加功能的药物做出了巨大贡献。

最近,OA建模最广泛使用的诱导剂是单碘乙酸酯(MIA)。MIA是甘油醛-3-磷酸脱氢酶的抑制剂,可引起软骨基质的变化、降解、软骨流失、滑膜炎等变化,与人类骨关节炎的病理变化相似9.已经注意到,关节内注射MIA在MIA给药后28天引起持续疼痛,表明MIA模型可能有助于研究慢性伤害性疼痛101112。在这项研究中,雄性Sprague-Dawley大鼠接受关节内注射,膝关节中含有0.5、1.5或3mg的MIA。通过注射后1、7、14、21、28和35天的机械和热敏感性评估来测量MIA诱导的关节疼痛的严重程度。在此基础上,选择1.5mg的MIA作为最终浓度,以评估注射后28天的步态模式和组织学变化。

Protocol

涉及动物受试者的程序已获得浙江中医大学医学规范和伦理委员会的批准,并符合中国关于实验动物使用和护理的立法。 1.膝关节内注射单碘乙酸酯 适应一周后,将40只体重180-200g(4-5周龄)的雄性Sprague-Dawley大鼠随机平均分为四组(n = 10只大鼠/组)。注意:对照组的大鼠将关节内注射50μL盐水,而实验组中的大鼠将分别用溶解在50μL盐水中的0.5,1.5或3mgMIA处理。</li…

Representative Results

通过这种方法,我们在大鼠中建立了OA疼痛模型并检测了由此产生的变化。MWT和TWL分别反映机械性异常性疼痛和热痛觉过敏。如图 1所示,MIA诱导的机械性异常性疼痛和热痛觉过敏以剂量依赖性方式存在。值得注意的是,MWT的下降从21 d达到峰值至28 d,然后反弹,表明现阶段可能发生关节修复,但3 mg MIA组的MWT仍处于较低水平。TWL的变化与MWT大致一致(图2</stron…

Discussion

MIA诱导的OA大鼠模型是一种成熟且广泛使用的模型。关节内注射MIA最初引起严重和急性炎症,这导致OA的更长和退行性阶段1718。在这项研究中,我们通过MWT和TWL测量了伤害敏感性,并使用成像系统评估了步态改变。先前的报告发现,注射MIA可以提高传入膝关节纤维的敏感性,导致伤害感受,这反映在热痛觉过敏和降低的机械阈值19<sup…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

本研究由中国浙江省自然科学基金(批准号:LY17H270016),中国国家自然科学基金(批准号:81774331,81873049和81673997)和中国浙江省中医药科学技术项目(批准号:2013ZQ007和2016ZZ011)资助。

Materials

Anti-Collagen II antibody Abcam(UK) 34712 Primary antibody for immunohistochemistry (IHC)
Anti-Collagen X (Col10) antibody Abcam(UK) 49945 Primary antibody for IHC
DigiGait Imaging System Mouse Specifics (Boston, MA, USA) Equipment for gait patterns analyses
Eosin Sigma-Aldrich 861006 The dye for HE staining
Fast Green FCF Sigma-Aldrich F7252 The dye for SO staining
Goat anti-mouse antibody ZSGQ-BIO (Beijing, China) PV-9002 Secondary antibody for IHC
Goat anti-rabbit antibody ZSGQ-BIO (Beijing, China) PV-9001 Secondary antibody for IHC
Hematoxylin Sigma-Aldrich H3163 The dye for HE staining
MIA Sigma-Aldrich I4386-10G powder
MMP13 Cell Signaling Technology, Inc. (Danvers, MA, USA) 69926 Primary antibody for IHC
Modular tissue embedding center Thermo Fisher Scientific (USA) EC 350 Produce paraffin blocks.
Plantar Test apparatus UgoBasile (Italy) 37370 Equipment for TWL assay
PrimeScript RT reagent Kit (Perfect Real Time) TaKaRa Biotechnology Co. Ltd. (Dalian, China) RR037A Extracte total RNA from cultured cells
Rotary and Sliding Microtomes Thermo Fisher Scientific (USA) HM325 Precise paraffin sections.
Safranin-O Sigma-Aldrich S2255 The dye for SO staining
Tissue-Tek VIP 5 Jr Sakura (Japan) Vacuum Infiltration Processor

Referencias

  1. Hunter, D. J., Schofield, D., Callander, E. The individual and socioeconomic impact of osteoarthritis. Nature Reviews Rheumatology. 10 (7), 437-441 (2014).
  2. Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis and Cartilage. 21 (9), 1145-1153 (2013).
  3. Teeple, E., Jay, G. D., Elsaid, K. A., Fleming, B. C. Animal models of osteoarthritis: challenges of model selection and analysis. AAPS Journal. 15 (2), 438-446 (2013).
  4. Woolf, A. D., Pfleger, B. Burden of major musculoskeletal conditions. Bulletin of the World Health Organization. 81 (9), 646-656 (2003).
  5. Bijlsma, J. W., Berenbaum, F., Lafeber, F. P. Osteoarthritis: an update with relevance for clinical practice. Lancet. 377 (9783), 2115-2126 (2011).
  6. McCoy, A. M. Animal Models of Osteoarthritis: Comparisons and Key Considerations. Veterinary Pathology. 52 (5), 803-818 (2015).
  7. O’Neill, T. W., Felson, D. T. Mechanisms of Osteoarthritis (OA) Pain. Current Osteoporosis Reports. 16 (5), 611-616 (2018).
  8. Kuyinu, E. L., Narayanan, G., Nair, L. S., Laurencin, C. T. Animal models of osteoarthritis: classification, update, and measurement of outcomes. Journal of Orthopaedic Surgery and Research. 11, 19 (2016).
  9. Takahashi, I., Matsuzaki, T., Hoso, M. Long-term histopathological developments in knee-joint components in a rat model of osteoarthritis induced by monosodium iodoacetate. Journal of Physical Therapy Science. 29 (4), 590-597 (2017).
  10. Liu, P., et al. Ongoing pain in the MIA model of osteoarthritis. Neuroscience Letters. 493 (3), 72-75 (2011).
  11. Combe, R., Bramwell, S., Field, M. J. The monosodium iodoacetate model of osteoarthritis: a model of chronic nociceptive pain in rats. Neuroscience Letters. 370 (2-3), 236-240 (2004).
  12. Pomonis, J. D., et al. Development and pharmacological characterization of a rat model of osteoarthritis pain. Pain. 114 (3), 339-346 (2005).
  13. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M., Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods. 53 (1), 55-63 (1994).
  14. Mankin, H. J., Dorfman, H., Lippiello, L., Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. Journal of Bone and Joint Surgery. 53 (3), 523-537 (1971).
  15. Yan, L., et al. Chondroprotective effects of platelet lysate towards monoiodoacetate-induced arthritis by suppression of TNF-α-induced activation of NF-ĸB pathway in chondrocytes. Aging. 11 (9), 2797-2811 (2019).
  16. Yan, B., et al. Intra-Articular Injection of Extract Attenuates Pain Behavior and Cartilage Degeneration in Mono-Iodoacetate Induced Osteoarthritic Rats. Frontiers in Pharmacology. 9, 1360 (2018).
  17. Wang, C., et al. Agkistrodon ameliorates pain response and prevents cartilage degradation in monosodium iodoacetate-induced osteoarthritic rats by inhibiting chondrocyte hypertrophy and apoptosis. Journal of Ethnopharmacology. 231, 545-554 (2019).
  18. Yamada, E. F., et al. Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: Relation with oxidative stress and pain. International Journal of Rheumatic Diseases. 22 (3), 399-410 (2019).
  19. Schuelert, N., McDougall, J. J. Electrophysiological evidence that the vasoactive intestinal peptide receptor antagonist VIP6-28 reduces nociception in an animal model of osteoarthritis. Osteoarthritis and Cartilage. 14 (11), 1155-1162 (2006).
  20. Lee, S. E. Choline, an alpha7 nicotinic acetylcholine receptor agonist, alleviates hyperalgesia in a rat osteoarthritis model. Neuroscience Letters. 548, 291-295 (2013).
  21. Piesla, M. J., et al. Abnormal gait, due to inflammation but not nerve injury, reflects enhanced nociception in preclinical pain models. Brain Research. 1295, 89-98 (2009).
  22. Udo, M., et al. Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time-dependent manner: proposed model-specific scoring systems. Osteoarthritis and Cartilage. 24 (7), 1284-1291 (2016).
  23. Guingamp, C., et al. Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry. Arthritis & Rheumatism. 40 (9), 1670-1679 (1997).
  24. Jeong, J. H., et al. Eupatilin Exerts Antinociceptive and Chondroprotective Properties in a Rat Model of Osteoarthritis by Downregulating Oxidative Damage and Catabolic Activity in Chondrocytes. PLoS ONE. 10 (6), 0130882 (2015).
  25. Cook, J. L., et al. Animal models of cartilage repair. Bone & Joint Research. 3 (4), 89-94 (2014).
  26. Little, C. B., Zaki, S. What constitutes an “animal model of osteoarthritis”–the need for consensus. Osteoarthritis and Cartilage. 20 (4), 261-267 (2012).

Play Video

Citar este artículo
Xu, J., Yan, L., Yan, B., Zhou, L., Tong, P., Shan, L. Osteoarthritis Pain Model Induced by Intra-Articular Injection of Mono-Iodoacetate in Rats. J. Vis. Exp. (159), e60649, doi:10.3791/60649 (2020).

View Video