Summary

Neuronal Differentiation from Mouse Embryonic Stem Cells In vitro

Published: June 02, 2020
doi:

Summary

Here, we established a low cost and easy to operate method that directs fast and efficient differentiation from embryonic stem cells into neurons. This method is suitable for popularization among laboratories and can be a useful tool for neurological research.

Abstract

The neural differentiation of mouse embryonic stem cells (mESCs) is a potential tool for elucidating the key mechanisms involved in neurogenesis and potentially aid in regenerative medicine. Here, we established an efficient and low cost method for neuronal differentiation from mESCs in vitro, using the strategy of combinatorial screening. Under the conditions defined here, the 2-day embryoid body formation + 6-day retinoic acid induction protocol permits fast and efficient differentiation from mESCs into neural precursor cells (NPCs), as seen by the formation of well-stacked and neurite-like A2lox and 129 derivatives that are Nestin positive. The healthy state of embryoid bodies and the timepoint at which retinoic acid (RA) is applied, as well as the RA concentrations, are critical in the process. In the subsequent differentiation from NPCs into neurons, N2B27 medium II (supplemented by Neurobasal medium) could better support the long term maintenance and maturation of neuronal cells. The presented method is highly efficiency, low cost and easy to operate, and can be a powerful tool for neurobiology and developmental biology research.

Introduction

Embryonic stem cells (ESCs) are pluripotent and can differentiate into neural precursor cells (NPCs) and subsequently into neurons under certain conditions1. ESC-based neurogenesis provides the best platform to mimic neurogenesis, thus serving as a useful tool for developmental biology studies and potentially aid in regenerative medicine2,3. In the past decades, many strategies have been reported for inducing embryonic neurogenesis, such as the transgenic method4, using small molecules5, using a 3D matrix microenvironment6, and the co-culture technique7. However, most of these protocols are either condition limited or hard to operate, thus they are not suitable for usage in most laboratories.

To find an easy to operate and low cost method to achieve efficient neural differentiation from mESCs, a combinatorial screening strategy was used here. As described in Figure 1, the whole process of embryonic neurogenesis was divided into 2 phases. Phase I refers to the differentiation process from mESCs into NPCs, and phase II relates to the subsequent differentiation from NPCs into neurons. Based on the principles of easy operation, low cost, easily available materials and high differentiation efficiency, seven protocols in Phase I and three protocols in Phase II were chosen based on the traditional adherent monolayer culture system or embryoid body formation system8,9. The differentiation efficiency of protocols in both phases was evaluated using cell morphology observation and immunofluorescence assay. Through combining the most efficient protocol of each phase, we established the optimized method for neural differentiation from mESCs.

Protocol

1. Mouse embryonic stem cell culture Prepare 0.1% gelatin coated cell culture dishes or plates. Add 2 mL of sterilized 0.1% gelatin (0.1% w/v in water) to 60 mm cell culture dishes. Rock gently to ensure even coating of the cell culture dishes. Put the dishes into a 5% CO2 incubator at 37 °C and allow coating for 1 h. Remove the 0.1% gelatin solution before seeding the cells. NOTE: After removing the gelatin, there is no need to dry or wash the coated …

Representative Results

2-day embryoid body formation + 6-day RA induction works best on directing the differentiation of mESCs into NPCs (Phase I). To determine the optimal protocol that best promote the differentiation of mESCs into NPCs (Phase I), 7 protocols were tested on both A2lox and 129 mESCs (Table 1) and the differentiation status of each group was monitored using light microscope. As shown in Figure 3A, most A2lox and 129 derivatives under "2-day embryoid body formation + 6-day RA i…

Discussion

In the present study, we established a simple and effective method for neuronal differentiation from mESCs, with low cost and easily obtained materials. In this method, 2 days of embryoid body formation followed by 6 days of RA induction can effectively promote the differentiation of mESCs into NPCs (Phase I-protocol 3). For the phase II differentiation, N2B27 medium II (Phase II-protocol 3) most effectively induce the differentiation from NPCs into neurons. To ensure success, more attention should be paid to several cri…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31501099) and the Middle-aged and Young of the Education Department of Hubei Province, China (No. Q20191104). And, we thank Professor Wensheng Deng at Wuhan University of Science and Technology for providing the mouse embryonic stem cell lines A2lox.

Materials

Anti-Nestin antibody [Rat-401] Abcam Ab11306 stored at -80 °C, avoid repeated freezing and thawing
Anti-β-Tubulin III antibody produced in rabbit Sigma Aldrich T2200 stored at -80 °C, avoid repeated freezing and thawing
Alexa Fluor 488-Labeled Goat Anti-Mouse IgG Beyotime A0428 stored at -20 °C and protect from light
B-27 Supplement (50X), serum free Gibco 17504044 stored at -20 °C, and protect from light
CHIR-99021 (CT99021) Selleck S1263 stored at -20 °C
Coverslips NEST 801007
Cy3-Labeled Goat Anti-Rabbit IgG Beyotime A0516 stored at -20 °C and protect from light
DME/F-12 1:1 (1x) HyClone SH30023.01B stored at 4 °C
Fetal bovine serum HyClone SH30084.03 stored at -20 °C, avoid repeated freezing and thawing
Fluorescence microscopy Olympus CKX53
Gelatin Gibco CM0635B stored at room temperature
GlutaMAX Supplement Gibco 35050061 stored at 4 °C
Immunol Staining Primary Antibody dilution Buffer Beyotime P0103 stored at 4 °C
KnockOut DMEM/F-12 Gibco 12660012 stored at 4 °C
KnockOut Serum Replacement Gibco 10828028 stored at -20 °C, avoid repeated freezing and thawing
Leukemia Inhibitory Factor human Sigma L5283 stored at -20 °C
Mounting Medium With DAPI – Aqueous, Fluoroshield Abcam ab104139 stored at 4 °C and protect from light
MEM Non-essential amino acids solution Gibco 11140076 stored at 4 °C
N-2 Supplement (100X) Gibco 17502048 stored at -20 °C and protect from light
Normal goat serum Jackson 005-000-121 stored at -20 °C
Neurobasal Medium Gibco 21103049 stored at 4 °C
Nonadhesive bacterial dish Corning 3262
Phosphate Buffered Saline (1X) HyClone SH30256.01B stored at 4 °C
Penicillin/ Streptomycin Solution HyClone SV30010 stored at 4 °C
PD0325901(Mirdametinib) Selleck S1036 stored at -20 °C
Retinoic acid Sigma R2625 stored at -80 °C and protect from light
Strain 129 Mouse Embryonic Stem Cells Cyagen MUAES-01001 Maintained in feeder-free culture system
Stem-Cellbanker (DMSO free) ZENOAQ stem cellbanker DMSO free stored at -20 °C, avoid repeated freezing and thawing
Trypsin 0.25% (1X) Solution HyClone SH30042.01 stored at 4 °C
Triton X-100 Sigma T8787
2-Mercaptoethanol Gibco 21985023 stored at 4 °C and protect from light
4% paraformaldehyde Beyotime P0098 stored at -20 °C
6 – well plate Corning 3516
60 mm cell culture dish Corning 430166
15 ml centrifuge tube NUNC 339650

Referencias

  1. Vieira, M. S., et al. Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological applications. Biotechnology Advances. 36 (7), 1946-1970 (2018).
  2. Yang, J. R., Lin, Y. T., Liao, C. H. Application of embryonic stem cells on Parkinson’s disease therapy. Genomic Medicine, Biomarkers, and Health Sciences. 3 (1), 17-26 (2011).
  3. Liu, C., Zhong, Y. W., Apostolou, A., Fang, S. Y. Neural differentiation of human embryonic stem cells as an in vitro tool for the study of the expression patterns of the neuronal cytoskeleton during neurogenesis. Biochemical and Biophysical Research Communications. 439 (1), 154-159 (2013).
  4. Khramtsova, E. A., Mezhevikina, L. M., Fesenko, E. E. Proliferation and differentiation of mouse embryonic stem cells modified by the Neural Growth Factor (NGF) gene. Biology Bulletin. 45 (3), 219-225 (2018).
  5. Yoshimatsu, S., et al. Evaluating the efficacy of small molecules for neural differentiation of common marmoset ESCs and iPSCs. Neuroscience research. , (2019).
  6. Kothapalli, C. R., Kamm, R. D. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials. 34, 5995-6007 (2013).
  7. Gazina, E. V., et al. Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks. Journal of Neuroscience Methods. 293, 53-58 (2018).
  8. Ohnuki, Y., Kurosawa, H. Effects of hanging drop culture conditions on embryoid body formation and neuronal cell differentiation using mouse embryonic stem cells: Optimization of culture conditions for the formation of well-controlled embryoid bodies. Journal of Bioscience and Bioengineering. 115 (5), 571-574 (2013).
  9. Wongpaiboonwattana, W., Stavridis, M. P. Neural differentiation of mouse embryonic stem cells in serum-free monolayer culture. Journal of Visualized experiments. (99), e52823 (2015).
  10. Li, Y., et al. An optimized method for neuronal differentiation of embryonic stem cells in vitro. Journal of Neuroscience Methods. 330 (15), 108486 (2020).
  11. Zhou, P., et al. Investigation of the optimal suspension culture time for the osteoblastic differentiation of human induced pluripotent stem cells using the embryoid body method. Biochemical and Biophysical Research Communications. 515 (4), 586-592 (2019).
  12. Lu, J. F., et al. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biology. 10, 57 (2009).
  13. Kanungo, J. Retinoic acid signaling in P19 stem cell differentiation. Anticancer Agents in Medicinal Chemistry. 17 (9), 1184-1198 (2017).
  14. Rochette-Egly, C. Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 1851 (1), 66-75 (2015).
  15. Wang, R., et al. Retinoic acid maintains self-renewal of murine embryonic stem cells via a feedback mechanism. Differentiation. 76 (9), 931-945 (2008).
  16. Wu, H. B., et al. Retinoic acid-induced upregulation of miR-219 promotes the differentiation of embryonic stem cells into neural cells. Cell Death Disease. 8, 2953 (2017).
  17. Chen, W., et al. Retinoic acid regulates germ cell differentiation in mouse embryonic stem cells through a Smad-dependent pathway. Biochemical and Biophysical Research Communications. 418 (3), 571-577 (2012).
  18. Nakayama, Y., et al. A rapid and efficient method for neuronal induction of the P19 embryonic carcinoma cell line. Journal of Neuroscience Methods. 227, 100-106 (2014).
  19. Bibel, M., et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nature neuroscience. 7 (9), 1003-1009 (2004).
  20. Coyle, D. E., Li, J., Baccei, M. Regional Differentiation of Retinoic Acid-Induced Human Pluripotent Embryonic Carcinoma Stem Cell Neurons. PLoS ONE. 6 (1), 16174 (2011).
  21. Okada, Y., Shimazaki, T., Sobue, G., Okano, H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Biología del desarrollo. 275, 124-142 (2004).
check_url/es/61190?article_type=t

Play Video

Citar este artículo
Mao, X., Zhao, S. Neuronal Differentiation from Mouse Embryonic Stem Cells In vitro. J. Vis. Exp. (160), e61190, doi:10.3791/61190 (2020).

View Video