Summary

使用自动成像系统测量 iPSC 的汇合度。

Published: June 10, 2020
doi:

Summary

该方案的目标是比较不同的细胞外基质(ECM)包被条件,以评估差异涂层如何影响诱导多能干细胞(iPSC)的生长速率。特别是,我们的目标是创造条件以获得iPSC培养物的最佳生长。

Abstract

本研究的重点是了解在不同ECM包衣底物上生长iPSC如何影响细胞汇合。已经建立了实时评估iPSC汇合的协议,而无需对单细胞悬液中的细胞进行计数,以避免任何生长扰动。使用高内涵图像分析系统以自动方式评估 4 种不同 ECM 上的 iPCS 汇合度。使用不同的分析设置来评估贴壁iPSC的细胞汇合度,并且仅观察到使用60%、80%或100%面膜的微小差异(在层粘连蛋白24和48小时)。我们还表明,与基质胶,玻连蛋白和纤连蛋白相比,层粘连蛋白导致最佳汇合。

Introduction

诱导多能干细胞(iPSC)是从体细胞中获得的,可以分化成不同的细胞类型。它们通常被用作模拟疾病发病机制或进行药物筛选的系统,并且还提供了用于个性化医疗的潜力。由于iPSCs具有巨大的潜力,因此充分表征它们以用作可靠的模型系统非常重要。我们之前展示了在缺氧环境中生长iPSCs的重要性,因为这些细胞依赖于糖酵解,而有氧环境会导致氧化还原失衡1。iPSCs也容易受到其他培养条件的影响,特别是细胞外环境。优化培养条件是保持其健康和增殖的关键问题。健康的iPSC培养将产生健康的分化细胞,这些分化细胞通常是用于了解特定人类疾病或细胞过程的分子,细胞和功能特征的模型的终点。

在这项研究中,已经使用一个简单的方案来测试在不同孔中使用不同包衣条件的iPSCs的汇合度。iPSCs需要鼠胚胎成纤维细胞(MEF)的饲养层才能正确附着,但是iPSCs和MEF的共存使得难以进行RNA或蛋白质提取等分析,因为存在两个细胞群。为了避免饲养层,属于细胞外基质(ECM)的不同蛋白质已被用于重建天然细胞生态位并具有无饲养层iPSC培养物。特别是,Matrigel是从Engelbreth-Holm-Swarm(EHS)小鼠肉瘤中提取的可溶基底膜制剂,其富含细胞外基质蛋白(即层粘连蛋白,胶原蛋白IV,硫酸乙酰肝素蛋白聚糖,entactin/nidogen和生长因子)23。其他使用的包被条件是纯化的蛋白质,这些蛋白质在构建ECM中具有已知的相关性:已知层粘连蛋白-521由胚胎内部细胞团中的人多能干细胞(hPSCs)分泌,它是出生后体内最常见的层粘连蛋白之一4,56789 1011;玻连蛋白是一种无异种细胞培养基质,已知可支持hPSC12,13141516的生长和分化;纤连蛋白是一种ECM蛋白,对脊椎动物发育以及胚胎干细胞在多能状态下的附着和维持很重要1718192021,22232425由于存在不同的包被条件,我们根据它们对iPSC汇合的影响来比较它们。

Protocol

1. 涂覆 96 孔板 注意:在同一板中测试不同的涂层,但不同的孔(见 补充文件)。 在DMEM中以1:100稀释基质胶。向96孔板中每孔加入100μL,并在室温下孵育1小时。之后,除去溶液并用 100 μL DMEM 洗涤孔两次。 在PBS(含钙和镁)中稀释层粘连蛋白(20μg/ mL,LN-521)。向孔中加入100μL并在4°C下孵育过夜。第二天在接种细胞之前用DMEM进行两次洗涤。 …

Representative Results

在这项研究中,我们研究了在不同包衣条件下生长时的iPSCs汇合。使用细胞仪,我们能够在5天内获得一式三份的简单信息结果。由于iPSCs几乎不附着在塑料容器上,并且需要涂层来支持其增殖,因此我们决定监测人iPSC的汇合,因为它表明细胞培养物的健康状况,并可能反映其分化潜力。体外扩增后,我们将iPSCs接种在不同的ECM底物上,并通过观察在明场中获得的样品图像并使用鬼笔环肽染色(用?…

Discussion

使用iPSCs进行疾病建模和未来的药物筛选以及它们在精准医学中的可能应用使其成为一项具有重要意义的技术,因此我们认为有必要清楚地了解更类似于胚胎干细胞生理状况的体外培养条件。在这种情况下,我们使用野生型iPSCs测试了不同的ECM涂层,以了解允许细胞保持健康和未分化状态的条件。除此之外,一个关键点是在MEF和基质胶的异种成分中培养iPSC,这可能解释了一式三份之间的实验变异?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

该研究得到了Bambino Gesù基金会和Ricerca Corrente(意大利卫生部)对C.C.的资助。 我们要感谢Enrico Bertini博士(神经科学系,神经肌肉和神经退行性疾病部门,分子医学实验室,Bambino Gesù儿童研究医院),Stefania Petrini博士(共聚焦显微镜核心设施,研究实验室,Bambino Gesù儿童研究医院),Giulia Pericoli(肿瘤血液学,基因和细胞治疗科,儿童研究医院Bambino Gesù Roberta Ferretti(Bambino Gesù儿童研究医院肿瘤血液学、基因和细胞治疗科进行科学讨论和技术帮助。玛丽亚·芬奇是“英国癌症儿童奖学金”的获得者。

Materials

10 mL Stripette Serological Pipets, Polystyrene, Individually Paper/Plastic Wrapped, Sterile Corning 4488 Tool
15 mL high-clarity polypropylene (PP) conical centrifuge tubes Falcon 352097 Tool
1x PBS (With Ca2+; Mg2+) Thermofisher 14040133 Medium
1x PBS (without Ca2+; Mg2+) Euroclone ECB4004L Medium
5 mL Stripette Serological Pipets, Polystyrene, Individually Paper/Plastic Wrapped, Sterile Corning 4487 Tool
Cell culture microplate, 96 WELL, PS, F-Bottom Greiner Bio One 655090 Support
Cell culture plate, 6 well Costar 3516 Support
DMEM (Dulbecco's Modified Eagle's Medium- high glucose) Sigma D5671 Medium
EDTA Sigma ED4SS-500g Reagent
Epi Episomal iPSC Reprogramming Kit Invitrogen A15960 Reagent
FAST – READ 102 Biosigma BVS100 Tool
Fetal Bovine Serum (FBS) Gibco 10270106 Medium
Fibronectin Merck FC010 Coating
Glycerol Sigma G5516 Reagent
H2O MILLIQ
Hoechst Thermofisher 33342 Reagent
Laminin 521 Stem Cell Technologies 77003 Coating
L-Glutamine (200 mM) Gibco LS25030081 Reagent
Matrigel Corning Matrigel hESC-Qualified Matrix 354277 Coating
Mouse embryonic fibroblasts (MEF) Life Technologies A24903 Coating
MTESR1 Medium Stem Cell Technologies 85851 Medium
MTESR1 Supplement Stem Cell Technologies 85852 Medium
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140122 Reagent
Phalloidin Sigma P1951 Reagent
Vitronectin Stem Cell Technologies 7180 Coating
Y-27632 Sigma Y0503 Reagent

Referencias

  1. Masotti, A., et al. Aged iPSCs display an uncommon mitochondrial appearance and fail to undergo in vitro neurogenesis. Aging (Albany NY). 6 (12), 1094-1108 (2014).
  2. Xu, C., et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology. 19, 971-974 (2001).
  3. Kleinman, H. K., et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Bioquímica. 21 (24), 6188-6193 (1982).
  4. Rodin, S., et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nature Communications. 5, 3195 (2014).
  5. Rodin, S., Antonsson, L., Hovatta, O., Tryggvason, K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521 based matrices under xeno-free and chemically defined conditions. Nature Protocols. 9 (10), 2354-2368 (2014).
  6. Laperle, A., et al. α-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal. Stem Cell Reports. 5 (2), 195-206 (2015).
  7. Albalushi, H., et al. Laminin 521 stabilizes the pluripotency expression pattern of human embryonic stem cells initially derived on feeder cells. Stem Cell International. 2018, 7127042 (2018).
  8. Zhang, D., et al. Niche-derived laminin-511 promotes midbrain dopaminergic neuron survival and differentiation through YAP. Science Signaling. 10 (493), (2017).
  9. Lu, H. F., et al. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials. 35 (9), 2816-2826 (2015).
  10. Miyazaki, T., Nakatsuji, N., Suemori, H. Optimization of slow cooling cryopreservation for human pluripotent stem cells. Genesis. 52 (1), 49-55 (2014).
  11. Bergström, R., Ström, S., Holm, F., Feki, A., Hovatta, O. Xeno-free culture of human pluripotent stem cells. Methods in Molecular Biology. 767, 125-136 (2011).
  12. Braam, S. R., et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells. 26 (9), 2257-2265 (2008).
  13. Chen, G., et al. Chemically defined conditions for human iPSC derivation and culture. Nature Methods. 8 (5), 424-429 (2008).
  14. Li, J., et al. Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases. 5 (3), 132-142 (2010).
  15. Prowse, A. B., et al. Long-term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials. 31 (32), 8281-8288 (2010).
  16. Rowland, T. J., et al. Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells and Development. 19 (8), 1231-1240 (2010).
  17. Ruoslahti, E., Engvall, E., Hayman, E. G., Spiro, R. G. Comparative studies on amniotic fluid and plasma fibronectins. Bioquímica. 193 (1), 295-299 (1981).
  18. Ni, H., Li, A., Simonsen, N., Wilkins, J. A. Integrin activation by dithiothreitol or Mn2+ induces a ligand-occupied conformation and exposure of a novel NH2-terminal regulatory site on the beta1 integrin chain. Biological Chemistry. 273 (14), 7981-7987 (1998).
  19. Seltana, A., Basora, N., Beaulieu, J. F. Intestinal epithelial wound healing assay in an epithelial-mesenchymal co-culture system. Wound Repair & Regeneration. 18 (1), 114-122 (2010).
  20. Amit, M., Shariki, C., Margulets, V., Itskovitz-Eldor, J. Feeder layer-and serum-free culture of human embryonic stem cells. Biology of Reproduction. 70 (3), 837-845 (2004).
  21. Vaheri, A., Mosher, D. F. High molecular weight, cell surface-associated glyco-protein (fibronectin) lost in malignant transformation. Biochimica et Biophysica Acta. 516 (1), 1-25 (1978).
  22. Mao, Y., Schwarzbauer, J. E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biology. 24 (6), 389-399 (2005).
  23. Polyak, K., Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer. 9 (4), 265-273 (2009).
  24. Kadler, K. E., Hill, A., Canty-Laird, E. G. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Current Opinion in Cell Biology. 20 (5), 495-501 (2008).
  25. Hunt, G. C., Schwarzbauer, J. E. Tightening the connections between cadherins and fibronectin matrix. Developmental Cell. 16 (3), 327-328 (2009).
  26. Villa-Diaz, L. G., Ross, A. M., Lahann, J., Krebsbach, P. H. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells. 31 (1), 1-7 (2013).
  27. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126 (4), 677-689 (2006).
  28. Vigilante, A., et al. Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. Cell Reports. 26 (8), 2078-2087 (2019).
check_url/es/61225?article_type=t

Play Video

Citar este artículo
Magliocca, V., Vinci, M., Persichini, T., Locatelli, F., Tartaglia, M., Compagnucci, C. Measuring the Confluence of iPSCs Using an Automated Imaging System. J. Vis. Exp. (160), e61225, doi:10.3791/61225 (2020).

View Video