Summary

A Bacterial Oral Feeding Assay with Antibiotic-Treated Mosquitoes

Published: September 12, 2020
doi:

Summary

This article presents a protocol to investigate the effect of individual mosquito gut bacteria, including isolation and identification of mosquito midgut cultivable microbes, antibiotic depletion of mosquito gut bacteria, and reintroduce one specific bacteria species.

Abstract

The mosquito midgut harbors a highly dynamic microbiome that affects the host metabolism, reproduction, fitness, and vector competence. Studies have been conducted to investigate the effect of gut microbes as a whole; however, different microbes could exert distinct effects toward the host. This article provides the methodology to study the effect of each specific mosquito gut microbe and the potential mechanism.

This protocol contains two parts. The first part introduces how to dissect the mosquito midgut, isolate cultivable bacteria colonies, and identify bacteria species. The second part provides the procedure to generate antibiotic-treated mosquitoes and reintroduce one specific bacteria species.

Introduction

Mosquitoes are considered to be the most important vectors of human pathogenic diseases, transmitting over a hundred pathogens including Zika virus, Dengue virus, and Plasmodium parasites1. When mosquitoes take a blood meal to acquire nutrients for oviposition, they can accidentally ingest pathogens from an infected host via the digestive tract2. Importantly, the mosquito midgut, which plays a pivotal role in both blood meal digestion and pathogen entrance, harbors a highly dynamic microbiome3.

Several studies have characterized lab-reared and field-collected mosquito microbiota using either a culture-dependent method or a bacteria sequencing assay4,5,6. Species including Pantoea, Serratia, Klebsiella, Elizabethkingia, and Enterococcus are commonly isolated from mosquitoes in various studies5,7,8,9. Interestingly, mosquito gut microbiota fluctuates dynamically in both the community diversity and the amount of bacteria species, affected by the development stage, species, geographical origin, and feeding behavior4. Studies show that blood feeding dramatically increases the total bacterial load with rapid expansion of species from Enterobacteriaceae and a reduction in overall diversity10,11. In addition, mosquito gut microbiota of the larval stage is usually eradicated when the insect undergoes metamorphosis during pupation and eclosion; thus, newly emerged adult mosquitoes need to repopulate their microbiota4.

Gut microbiota modulates insect physiology in various aspects, including nutrient absorption, immunity, development, reproduction, and vector competence12. Axenic mosquito larvae fail to develop beyond the first instar while a bacteria oral supply rescues development, indicating that the mosquito gut microbe is essential for larval development13,14. Besides, depletion of gut bacteria retards blood meal digestion and nutrient absorption, affects oocyte maturation, and decreases oviposition15. In addition, mosquitoes with gut microflora elicit higher immune responses compared to antibiotic-treated mosquitoes, with constantly elevated antimicrobial peptide expression against other pathogens to infect16. Antibiotics are usually orally administered to remove pan gut bacteria in these studies, and then experiments are conducted to compare the difference between axenic mosquitoes and mosquitoes with commensal microbes. However, the mosquito midgut harbors a diverse community of microbes, and each bacteria species could exert a distinct effect toward the host physiology.

Mosquito microbiota regulates vector competence with divergent effects. Colonization by Proteus isolated from field-derived mosquitoes of dengue-endemic areas confers upregulated antimicrobial peptide expression and resistance against dengue virus infection16. The entomopathogenic fungus Beauveria bassiana activates the Toll and JAK-STAT immune pathway against arbovirus infection17. By contrast, the fungus Talaromyces isolated from Aedes aegypti midgut facilitates dengue virus infection by modulating gut trypsin activity18. In addition, Serratia marcescens promotes arbovirus transmission through a secretory protein called SmEnhancin, which digests the mucin layer on the intestinal epithelium of mosquitoes19.

This procedure provides a systematic and intuitive method for dissection of the mosquito midgut, isolation of cultivable bacteria colonies, identification of the bacteria species, and reintroduction via oral feeding. It provides representative results of blood feeding with a commensal bacterium, Chryseobacterium meningosepticum, on mosquito ovary development and oviposition.

Protocol

1. Midgut dissection and cultivable bacteria isolation Prepare the mosquito for dissection. Collect the mosquitoes 7–9 days after emergence with an aspirator. Anesthetize the collected mosquitoes by subjecting them to a temperature of 4 °C for 3–5 min and keep the mosquitoes anesthetized in an ice-cold Petri dish until dissection. Sterilize laboratory instruments and the mosquito surface. Sterilize the experimen…

Representative Results

The midguts of mosquitoes treated with antibiotics and without antibiotics were taken out for DNA extraction, and qPCR was performed with universal bacterial primers. Figure 1 shows the expression of bacterial 16S rRNA in the control group and antibiotic treatment group. The results show that about 98% of the gut bacteria have been removed, and the gut sterilization of penicillin and streptomycin was successful. With the methods described, bacteria strains were isolated and id…

Discussion

Research on host-microbe interactions have found that different gut microbes affect their host physiology via divergent mechanisms. This article introduces the method to investigate the respective role of mosquito gut microbe, including dissecting mosquito midgut, culturing cultivable gut bacteria, antibiotic treatment, and reintroducing the bacteria of interest.

For successful antibiotic treatment, the following details must be considered in conducting the experiment. In this protocol, mosqui…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81902094, 81600497), and the Science and Technology Plan Project of Hunan Province (2019RS1036).

Materials

Adenosine 5′-triphosphate disodium salt hydrate Sigma A2383 Adenosine 5′-triphosphate disodium salt hydrate has been used to prepare adenosine triphosphate (ATP) standard solutions
Aedes aegypti Female mosquitoes
Anticoagulant tube BD Vacutainer 363095 Collect fresh blood
Centrifuge tube Sangon Biotech F601620-0010 1.5 ml, Natural, Graduated, Sterile
Cotton balls
Disposable Tissue Grinding Pestle Sangon Biotech F619072-0001 70 mm Long, Conical, Blue, Sterile
Ethanol absolute Paini Dilute it to 75% ethanol
Forceps RWD F11029 Dissection
Hemotek Membrane Feeding System Hemotek Components of the feeding system, including  Hemotek temperature controller, feeder-housing assembly, metal feeder assembled.
Incubator shaker ZQZY-78AN
Inoculation Loops Sangon Biotech F619312-0001 10 μl, Yellow
LB Agar Powder Sangon Biotech A507003 Tryptone 10.0 g; Yeast Extract 5.0 g; NaCl 10.0 g; Agar 15.0 g.
LB Broth Powder Sangon Biotech A507002 Tryptone 10.0 g; Yeast Extract 5.0 g; NaCl 10.0 g.
Microscope Zeiss Stemi508
Paper cup Place mosquito
Parafilm Sangon Biotech F104002 4 inx 125 ft
Petri dish Sangon Biotech F611203
Penicillin G procaine salt hydrate Sangon Biotech A606248 White powder. Soluble in water, soluble in methanol, slightly soluble in water, ethanol
Single Channal Pipettor Gilson
Streptomycin sulfate Sangon Biotech A610494 Streptomycin sulfate is a glucosamine antibiotic that interferes with the synthesis of prokaryotic proteins.
Sucrose Sangon Biotech A502792 Soluble in water, ethanol and methanol, slightly soluble in glycerol and pyridine.
TIANamp Bacteria DNA Kit TIANGEN DP302 Extract DNA 
Utility Fabric-Mosquito Netting White
Vortex mixer Scintic Industries S1-0246
1.5ml EP tube Sangon Biotech F600620
10X PBS buffer Sangon Biotech E607016 This product is a 10X solution. Please dilute it 10 times before use. The pH value is 7.4.

Referencias

  1. Tolle, M. A. Mosquito-borne diseases. Current Problems in Pediatric and Adolescent Health Care. 39 (4), 97-140 (2009).
  2. Wu, P., Yu, X., Wang, P., Cheng, G. Arbovirus lifecycle in mosquito: acquisition, propagation and transmission. Expert Reviews in Molecular Medicine. 21, 1 (2019).
  3. Jayakrishnan, L., Sudhikumar, A. V., Aneesh, E. M. Role of gut inhabitants on vectorial capacity of mosquitoes. Journal of Vector Borne Diseases. 55 (2), 69 (2018).
  4. Jupatanakul, N., Sim, S., Dimopoulos, G. The insect microbiome modulates vector competence for arboviruses. Viruses. 6 (11), 4294-4313 (2014).
  5. Moro, C. V., Tran, F. H., Raharimalala, F. N., Ravelonandro, P., Mavingui, P. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiology. 13 (1), 70 (2013).
  6. Chouaia, B., et al. Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Applied and Environmental Microbiology. 76 (22), 7444-7450 (2010).
  7. Terenius, O., et al. Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiology Ecology. 80 (3), 556-565 (2012).
  8. Bando, H., et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Scientific Reports. 3, 1641 (2013).
  9. Telang, A., Skinner, J., Nemitz, R. Z., McClure, A. M. Metagenome and culture-based methods reveal candidate bacterial mutualists in the Southern house mosquito (Diptera: Culicidae). Journal of Medical Entomology. 55 (5), 1170-1181 (2018).
  10. Wang, Y., Gilbreath, T. M., Kukutla, P., Yan, G., Xu, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PloS One. 6 (9), (2011).
  11. Xiao, X., et al. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nature Microbiology. 2 (5), 17020 (2017).
  12. Guégan, M., et al. Short-term impacts of anthropogenic stressors on Aedes albopictus mosquito vector microbiota. FEMS Microbiology Ecology. 94 (12), 188 (2018).
  13. Valzania, L., Coon, K. L., Vogel, K. J., Brown, M. R., Strand, M. R. Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America. 115 (3), 457-465 (2018).
  14. Coon, K. L., Vogel, K. J., Brown, M. R., Strand, M. R. Mosquitoes rely on their gut microbiota for development. Molecular Ecology. 23 (11), 2727-2739 (2014).
  15. de O Gaio, A., et al. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae)(L). Parasites & Vectors. 4 (1), 105 (2011).
  16. Ramirez, J. L., et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Neglected Tropical Diseases. 6 (3), 1561 (2012).
  17. Dong, Y., Morton, J. C., Ramirez, J. L., Souza-Neto, J. A., Dimopoulos, G. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochemistry and Molecular Biology. 42 (2), 126-132 (2012).
  18. Anglero-Rodriguez, Y. I., et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife. 6, 28844 (2017).
  19. Wu, P., et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host & Microbe. 25 (1), 101-112 (2019).
  20. Möhlmann, T. W., et al. Impact of gut bacteria on the infection and transmission of pathogenic arboviruses by biting midges and mosquitoes. Microbial Ecology. , (2020).
  21. Llorca, M., Gros, M., Rodríguez-Mozaz, S., Barceló, D. Sample preservation for the analysis of antibiotics in water. Journal of Chromatography. A. 1369, 43-51 (2014).
  22. Berendsen, B., Elbers, I., Stolker, A. Determination of the stability of antibiotics in matrix and reference solutions using a straightforward procedure applying mass spectrometric detection. Food Additives & Contaminants: Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment. 28 (12), 1657-1666 (2011).
  23. Hill, C. L., Sharma, A., Shouche, Y., Severson, D. W. Dynamics of midgut microflora and dengue virus impact on life history traits in Aedes aegypti. Acta Tropica. 140, 151-157 (2014).
  24. Eng, M. W., et al. Multifaceted functional implications of an endogenously expressed tRNA fragment in the vector mosquito Aedes aegypti. PLoS Neglected Tropical Diseases. 12 (1), 0006186 (2018).
  25. Kajla, M. K., Barrett-Wilt, G. A., Paskewitz, S. M. Bacteria: A novel source for potent mosquito feeding-deterrents. Science Advances. 5 (1), 6141 (2019).
  26. Gonçalves, G. G. A., et al. Use of MALDI-TOF MS to identify the culturable midgut microbiota of laboratory and wild mosquitoes. Acta Tropica. 200, 105174 (2019).
  27. Kuss, S. K., et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 334 (6053), 249-252 (2011).
  28. Rani, A., Sharma, A., Rajagopal, R., Adak, T., Bhatnagar, R. K. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiology. 9 (1), (2009).
  29. Apte-Deshpande, A., Paingankar, M., Gokhale, M. D., Deobagkar, D. N. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One. 7 (7), 40401 (2012).
  30. Behura, S. K. Mosquito microbiota and metagenomics, and its relevance to disease transmission. Nature. 436, 257-260 (2013).
  31. Dickson, L. B., et al. Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasites & Vectors. 11 (1), 1-8 (2018).
check_url/es/61341?article_type=t

Play Video

Citar este artículo
Liu, X., Wu, S., Li, W., Zhang, M., Wu, Y., Zhou, N., Wu, P. A Bacterial Oral Feeding Assay with Antibiotic-Treated Mosquitoes. J. Vis. Exp. (163), e61341, doi:10.3791/61341 (2020).

View Video