Summary

恶性疟原虫 通过人工膜喂养进行配子体培养和蚊子感染

Published: July 03, 2020
doi:

Summary

对疟疾寄生虫的蚊子阶段进行详细调查对于设计有效的传播阻断策略至关重要。该协议展示了如何有效地培养传染性配子体,然后将这些配子体喂给蚊子以产生 恶性疟原虫的蚊子阶段。

Abstract

疟疾仍然是最重要的公共卫生问题之一,导致严重的发病率和死亡率。疟疾是一种蚊子传播的疾病,通过雌性 按蚊 的传染性叮咬传播。疟疾控制最终将取决于多种方法,其中包括阻断与蚊子之间、通过蚊子传播和传播的方法。为了在实验室中研究疟疾寄生虫的蚊子阶段,我们优化了培养高传染性 恶性疟原 虫配子体的方案,这是从人类宿主传播到蚊子媒介所需的寄生虫阶段。 恶性疟原虫 配子体通过五个形态学上不同的步骤成熟,大约需要1-2周。该协议中描述的配子细胞培养在15天内完成,并且从第15-18天对蚊子具有传染性。这些方案的制定是为了维持感染合格配子体的连续循环,并维持寄生虫蚊子阶段的不间断供应。在这里,我们描述了配子体培养的方法,以及如何使用玻璃膜喂食器用这些寄生虫感染蚊子。

Introduction

疟疾是由 疟原虫 寄生虫引起的,并通过雌性 蚊的传染性叮咬传播给脊椎动物宿主。根据2019年世界卫生组织(WHO)的报告,估计有405,000人死亡,而疟疾病例总数为2.28亿例1。大多数与疟疾有关的死亡集中在非洲区域,特别是五岁以下儿童。虽然全球疟疾的总体发病率从2010年开始下降,但近年来下降已趋于平稳,迫切需要采取额外的控制战略来消除这种疾病。

疟疾寄生虫的循环无性血液阶段引起疾病发病机制,其中一小部分分化为雌性和雄性配子体。恶性疟原虫配子体本质上是独一无二的,因为它们需要7-10天才能通过五个形态学上不同的阶段发育。从I期到IV期的未成熟配子体被隔离在骨髓实质中,并且在外周循环中基本上不存在2,3,4,5。感染成熟V期配子体的红细胞在血液中释放并自由循环,被蚊子吸收。一旦进入蚊子中肠,配子体就会被激活,通过温度的变化和暴露于中肠环境,转变为雌性和雄性配子并开始蚊子阶段的发展,其最终达到蚊子唾液腺中孢子体的感染阶段6,7。

由于Trager和Jenson8描述了一种培养恶性疟原虫的标准化方法,对无性血阶段的研究有了很大的进展。然而,由于缺乏可靠的性阶段培养系统,使得研究恶性疟原虫配子体,传播生物学和蚊子阶段变得困难。近年来,已经发表了几种方法,这些方法帮助实验室建立了配子体培养物9,10,11,12。本手稿描述了标准化和可靠的恶性疟原虫配子体培养方案,该协议可以代表疟疾研究界的宝贵资源。这种方法能够稳健地产生成熟和传染性的配子体,再加上标准化的蚊子喂养方案,导致高度可靠的蚊子传染性。建立这些方法是为了维持配子体和蚊子期寄生虫的不间断供应。在这份手稿中,我们描述了一个彻底的配子体培养方案(图1),使用这些膜饲养器制备玻璃膜饲养器和蚊子感染(图2),解剖中肠(图3)和蚊子的唾液腺(图4),以及中肠和唾液腺解剖后蚊子感染的定量。

Protocol

下面描述的血液收集已获得约翰霍普金斯大学机构审查委员会的批准。 恶性疟原虫 在生物安全2级(BSL2)设施的无菌条件下在新鲜红细胞中培养,并谨慎处理生物材料。在涉及血液或血液制品的每个步骤之后,每个塑料器皿或玻璃器皿在正确处理之前,都要在罩内用10%的漂白剂冲洗。 1. 试剂和制备 使用寄生虫分离物 恶性疟原虫NF54( 见材料表</stro…

Representative Results

在这里,我们展示了使用使用上述方案生成的 恶性疟原虫 NF54配子体培养物的一系列膜进料的结果(见(图5)。配子体培养在第0天以约0.5%的混合期无性培养开始,到第4天和第5天生长至约15%的寄生虫血症高峰。如图 5A 所示,在这种高度寄生虫血症下,寄生虫受到压力,无性阶段培养崩溃。然而,这种压力同时导致配子细胞生成的诱导。早期配?…

Discussion

这里描述的方法已在约翰霍普金斯疟疾研究所成功使用超过10年15、16、17、18、19、20、21、22。使用该协议产生的配子体已被用于高通量配子细胞杀灭测定22,蛋白质组学<sup class="…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者感谢彭博慈善基金会对约翰霍普金斯疟疾研究所(JHMRI)的财政支持。如果没有JHMRI昆虫和寄生虫学核心设施提供的专业知识,这项工作是不可能的。

Materials

10% Sugar solution
10ml serological pipet Falcon 357551
15 ml conical tube Falcon 352096
1ml serological pipet Falcon 357521
25 ml serological pipet Falcon 357535
37°C Incubator
50 ml conical tube Falcon 352070
5ml serological pipet Falcon 357543
6 well tissue culture plates Falcon 353046
70% Ethanol
9" glass pipet Fisherbrand 13-678-6B
Anopheles Mosquitoes JHMRI, Insectary core We use A. stephensi or A. gambiae (keele)
cell counter
Circulating water bath
fine tip forceps Fisherbrand 12-000-122
Geimsa stain Sigma GS1L
Glass desiccator
Glass membrane feeder Chemglass Life Sciences CG183570
Glass slides Fisherbrand 12-552-3
HBSS Sigma H6648
Human Blood O+ JHU Wash RBCs three times with RPMI and refrigerate at 50% heamatocrit
Human Serum O+ Interstate blood bank Pool at-least 6 units of serum from different donors and freeze down aliquots at -20°C.
Hypoxanthine Sigma H9337 Make 500x stock in 1M NaOH
Mercurochrome Sigma M7011 Prepare 1% stock solution in PBS that can be diluted to 0.1% when needed
Micro Pipette
Microscope Olympus Any microscope with 10x, 40x and 100x objective will work.
Mosquito cups Neptune cups
N-acetylglucosamine Sigma A3286 Optional and needed only when pure gametocytes are required.
Netting Make sure it can contain mosquitoes and allow blood feeding
Parafilm
PBS
Petri dish Thermo Scientific 249964
Pipet tips
Pipetman
Plasmodium falciparum NF54 BEI Resources MRA-1000 Freeze down large numbers of early passage culture to make sure you have a constant supply
RPMI 1640 Corning CV-041-CV Media contains glutamine and HEPES
Slide warmer
Sodium bicarbonate Sigma S6297 Optional for media, add only when using malaria gas mix during culture incubation
water bath
Xanthurenic Acid Sigma D120804 For flagellation media

Referencias

  1. World Health Organization. World Malaria Report. World Health Organization. , (2018).
  2. Sinden, R. E., Smalley, M. E. Gametocytogenesis of Plasmodium falciparum in vitro: The cell-cycle. Parasitology. 79 (2), 277-296 (1979).
  3. Sinden, R. E. Sexual Development of Malarial Parasites. Advances in Parasitology. 22, 153-216 (1983).
  4. Joice, R., et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Science Translational Medicine. 6 (244), 5 (2014).
  5. Abdulsalam, A. H., Sabeeh, N., Bain, B. J. Immature Plasmodium falciparum gametocytes in bone marrow. American Journal of Hematology. 85 (12), 943 (2010).
  6. Ghosh, A. K., Jacobs-Lorena, M. Plasmodium sporozoite invasion of the mosquito salivary gland. Current Opinion in Microbiology. 12 (4), 394-400 (2009).
  7. Bennink, S., Kiesow, M. J., Pradel, G. The development of malaria parasites in the mosquito midgut. Cellular Microbiology. 18 (7), 905-918 (2016).
  8. Trager, W., Jenson, J. B. Cultivation of malarial parasites. Nature. 273 (5664), 621-622 (1978).
  9. Duffy, S., Loganathan, S., Holleran, J. P., Avery, V. M. Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nature Protocols. 11 (5), 976-992 (2016).
  10. Delves, M. J., et al. Routine in vitro culture of P. Falciparum gametocytes to evaluate novel transmission-blocking interventions. Nature Protocols. 11 (9), 1668-1680 (2016).
  11. Habtewold, T., et al. Streamlined SMFA and mosquito dark-feeding regime significantly improve malaria transmission-blocking assay robustness and sensitivity. Malaria Journal. 18 (1), 24 (2019).
  12. Demanga, C. G., et al. The development of sexual stage malaria gametocytes in a Wave Bioreactor. Parasites and Vectors. 10 (1), 216 (2017).
  13. Brockelman, C. R. Conditions favoring gametocytogenesis in the continuous culture of Plasmodium falciparum. Journal of Eukaryotic Microbiology. 29, 454-458 (1982).
  14. Meibalan, E., Marti, M. Biology of malaria transmission. Cold Spring Harbor Perspectives in Medicine. 7, (2017).
  15. Essuman, E., et al. A novel gametocyte biomarker for superior molecular detection of the plasmodium falciparum infectious reservoirs. Journal of Infectious Diseases. 216 (10), 1264-1272 (2017).
  16. Simões, M. L., Mlambo, G., Tripathi, A., Dong, Y., Dimopoulos, G. Immune regulation of plasmodium is anopheles species specific and infection intensity dependent. mBio. 8 (5), 01631 (2017).
  17. Oakley, M. S., et al. Transcriptome analysis based detection of Plasmodium falciparum development in Anopheles stephensi mosquitoes. Scientific Reports. 8, 11568 (2018).
  18. Saraiva, R. G., et al. Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Scientific Reports. 8, 6176 (2018).
  19. Tao, D., et al. Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology. Molecular and Cellular Proteomics. 13 (10), 2705-2724 (2014).
  20. Grabias, B., Zheng, H., Mlambo, G., Tripathi, A. K., Kumar, S. A sensitive enhanced chemiluminescent-ELISA for the detection of Plasmodium falciparum circumsporozoite antigen in midguts of Anopheles stephensi mosquitoes. Journal of Microbiological Methods. 108, 19-24 (2015).
  21. Ferrer, P., Vega-Rodriguez, J., Tripathi, A. K., Jacobs-Lorena, M., Sullivan, D. J. Antimalarial iron chelator FBS0701 blocks transmission by Plasmodium falciparum gametocyte activation inhibition. Antimicrobial Agents and Chemotherapy. 59 (3), 1418-1426 (2015).
  22. Sanders, N. G., Sullivan, D. J., Mlambo, G., Dimopoulos, G., Tripathi, A. K. Gametocytocidal screen identifies novel chemical classes with Plasmodium falciparum transmission blocking activity. PLoS One. 9 (8), 105817 (2014).
  23. Lindner, S. E., et al. Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nature Communications. 10, 4964 (2019).
  24. McLean, K. J., et al. Generation of Transmission-Competent Human Malaria Parasites with Chromosomally-Integrated Fluorescent Reporters. Scientific Reports. 9, 13131 (2019).
  25. Espinosa, D. A., et al. Proteolytic Cleavage of the Plasmodium falciparum Circumsporozoite Protein Is a Target of Protective Antibodies. Journal of Infectious Diseases. 212 (7), 1111-1119 (2015).
  26. Swearingen, K. E., et al. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathogens. 12 (4), 1005606 (2016).
  27. Ifediba, T., Vanderberg, J. P. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature. 294 (5839), 364-366 (1981).
  28. Miura, K., et al. An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines. Malaria Journal. 15, 463 (2016).
  29. Miura, K., et al. Qualification of Standard Membrane-Feeding Assay with Plasmodium falciparum Malaria and Potential Improvements for Future Assays. PLoS One. 8 (3), 57909 (2013).

Play Video

Citar este artículo
Tripathi, A. K., Mlambo, G., Kanatani, S., Sinnis, P., Dimopoulos, G. Plasmodium falciparum Gametocyte Culture and Mosquito Infection Through Artificial Membrane Feeding. J. Vis. Exp. (161), e61426, doi:10.3791/61426 (2020).

View Video