Summary

通过磁共振成像和运动补偿进行人胎儿血流定量

Published: January 07, 2021
doi:

Summary

在这里,我们提出了一种用MRI快速测量胎儿血流的协议,并回顾性地进行运动矫正和心脏门控。

Abstract

磁共振成像(MRI)是临床评估心血管形态和心脏功能的重要工具。它也是基于相差MRI的血流量化的公认护理标准。虽然这种血流测量在成人中已经存在了几十年,但将这种能力扩展到胎儿血流的方法直到最近才被开发出来。

主要血管中的胎儿血流定量对于监测先天性心脏病 (CHD) 和胎儿生长受限 (FGR) 等胎儿病理非常重要。冠心病引起心脏结构和脉管系统的改变,从而改变胎儿的血液过程。在FGR中,通过扩张分流器改变血流路径,从而增加大脑的含氧血液供应。血流定量可以评估胎儿病理的严重程度,这反过来又允许适合子宫内的患者管理和产后护理计划。

将相差MRI应用于人类胎儿的主要挑战包括血管体积小,胎心率高,由于母亲呼吸而导致的潜在MRI数据损坏,不可预测的胎儿运动以及缺乏传统的心脏门控方法来同步数据采集。在这里,我们描述了我们实验室的最新技术发展,这些技术发展能够使用相差MRI量化胎儿血流,包括加速成像,运动补偿和心脏门控方面的进展。

Introduction

对胎儿循环进行全面评估对于监测胎儿病变(如胎儿生长受限 (FGR) 和先天性心脏病 (CHD))是必要的1,23。在子宫内,患者管理和产后护理计划取决于胎儿病理的严重程度4567最近证明了使用MRI定量胎儿血流的可行性及其在评估胎儿病理学中的应用389。然而,成像方法面临着挑战,例如增加成像时间以实现高时空分辨率,缺乏心脏同步方法以及不可预测的胎儿运动10

胎儿脉管系统由小结构组成(包括降主动脉、动脉导管、升主动脉、主动脉、主肺动脉和上腔静脉的主要血管直径 ~5 mm)111213)。为了解析这些结构并量化流量,需要高空间分辨率的成像。此外,胎儿的心率大约是成人的两倍。因此,还需要高时间分辨率来解析整个胎儿心动周期的动态心脏运动和血流。在这种高时空分辨率下进行传统成像需要相对较长的采集时间。为了解决这个问题,引入了加速胎儿MRI141516。简而言之,这些加速技术涉及数据采集期间频域欠采样和使用迭代技术的回顾性高保真重建。其中一种方法是压缩感知(CS)重建,当重建的图像在已知域中稀疏并且欠采样伪影不相干时,它允许从严重欠采样的数据中重建图像17

胎儿成像中的运动是一项重大挑战。运动不良可能由母亲的呼吸运动、母亲的大量运动或胎儿的粗大运动引起。母体呼吸导致胎儿的周期性翻译,而胎动则更为复杂。胎动可分为局部或粗大1018。局部运动仅涉及身体部分的运动。它们通常持续约10-14秒,并且其频率随着妊娠而增加(足月时每小时~90次)10。这些移动通常会导致小的损坏,并且不会影响感兴趣的成像区域。然而,胎儿的剧烈运动会导致通过平面运动组件的严重图像损坏。这些运动是由脊柱介导的全身运动,持续60-90秒。

为避免胎动造成的伪影,首先采取措施尽量减少母体运动。孕妇在扫描仪床上使用支撑枕头并穿着舒适的长袍,并可能让她们的伴侣在扫描仪旁边以减少幽闭恐惧症1920。为了减轻母亲呼吸运动的影响,研究在母亲屏气的情况下进行了胎儿MR检查212223。然而,鉴于怀孕受试者的屏气耐受性降低,这种获取必须很短(~15 s)。最近,针对胎儿MRI引入了回顾性运动矫正方法141516。这些方法使用注册工具包跟踪胎儿运动,并纠正运动或丢弃采集数据的不可纠正部分。

最后,通常使用心电图(ECG)门控获取产后心脏MR图像,以使数据采集与心动周期同步。在没有门控的情况下,整个心动周期的心脏运动和脉动流结合在一起,产生伪影。不幸的是,胎儿心电信号受到母体心电信号24的干扰和磁场25的失真。因此,已经提出了胎儿心脏门控的替代非侵入性方法,包括自门控,度量优化门控(MOG)和多普勒超声门控21262728

如以下各节所述,我们量化胎儿血流量的MRI方法利用了我们实验室开发的新型门控方法MOG,并结合了加速MRI采集的运动校正和迭代重建。该方法基于先前发表的研究14中的管道,由以下五个阶段组成:(1)胎儿血流采集,(2)实时重建,(3)运动校正,(4)心脏门控和(5)门控重建。

Protocol

所有MRI扫描都是在志愿者的知情同意下进行的,这是我们机构研究伦理委员会批准的一项研究的一部分。 注意:下面描述的方法已用于3T MRI系统。采集使用径向相衬MRI序列进行。该序列是通过修改制造商的笛卡尔相衬MRI的读出轨迹(以实现星状模式)来制备的。序列和样品实验方案可应要求通过我们的C2P交换平台获得。这项工作中的所有重建都是在具有以下规格的标…

Representative Results

一般来说,血流MRI相检查针对六大胎儿血管:降主动脉、升主动脉、主肺动脉、动脉导管、上腔静脉和脐静脉。临床医生对这些血管感兴趣,因为它们通常与冠心病和FGR有关,影响整个胎儿的血液分布9。径向相衬MRI的典型扫描持续时间为每血管17秒,因此扫描时间短,同时也为CINE重建提供了足够的数据采集时间。代表性结果的总采集时间,包括定位器和相衬MRI,为3 min。在这项?…

Discussion

该方法能够无创地测量人类胎儿大血管中的血流量,并允许通过使用迭代重建技术进行回顾性运动校正和心脏门控。过去曾使用MRI进行胎儿血流定量1,389这些研究具有减轻运动损坏的前瞻性方法,如果从扫描仪上的初始重建中直观地识别出胎儿粗大运动,则将重复扫描…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

elastix Image Sciences Institute, University Medical Center Utrecht Image registration software
Geforce GTX 960  Nvidia  04G-P4-3967-KR
gpuNUFFT CAI²R Non-uniform fast Fourier transform
MAGNETOM Prisma Siemens 10849583
MATLAB MathWorks
Radial Phase Contrast MRI sequence Trajectory modification of manufacturer's Cartesian Phase Contrast sequence
Segment Medvisio Data analysis
VENGEANCE Corsair LPX DDR4-2666 

Referencias

  1. Zhu, M. Y., et al. The hemodynamics of late-onset intrauterine growth restriction by MRI. American Journal of Obstetrics and Gynecology. 214 (3), 1-17 (2016).
  2. Zhu, M. Y., Jaeggi, E., Roy, C. W., Macgowan, C. K., Seed, M. Reduced combined ventricular output and increased oxygen extraction fraction in a fetus with complete heart block demonstrated by MRI. HeartRhythm Case Reports. 2 (2), 164-168 (2016).
  3. Sun, L., et al. Reduced Fetal Cerebral Oxygen Consumption is Associated With Smaller Brain Size in Fetuses With Congenital Heart Disease. Circulation. 131 (15), 1313-1323 (2015).
  4. Freud, L. R., et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation. 130 (8), 638-645 (2014).
  5. Peleg, D., Kennedy, C. M., Hunter, S. K. Intrauterine growth restriction: identification and management. American Family Physician. 58 (2), 453-467 (1998).
  6. Krishna, U., Bhalerao, S. Placental Insufficiency and Fetal Growth Restriction. Journal of Obstetrics and Gynaecology of India. 61 (5), 505-511 (2011).
  7. Seravalli, V., Miller, J. L., Block-Abraham, D., Baschat, A. A. Ductus venosus Doppler in the assessment of fetal cardiovascular health: an updated practical approach. Acta Obstetricia et Gynecologica Scandinavica. 95 (6), 635-644 (2016).
  8. Seed, M., et al. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. Journal of Cardiovascular Magnetic Resonance. 14 (1), 79 (2012).
  9. Prsa, M., et al. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circulation. Cardiovascular Imaging. 7 (4), 663-670 (2014).
  10. Piontelli, A. . Development of Normal Fetal Movements: The Last 15 Weeks of Gestation. , (2015).
  11. Cartier, M., et al. The normal diameter of the fetal aorta and pulmonary artery: echocardiographic evaluation in utero. American Journal of Roentgenology. 149 (5), 1003-1007 (1987).
  12. Ruano, R., de Fátima Yukie Maeda, M., Niigaki, J. I., Zugaib, M. Pulmonary artery diameters in healthy fetuses from 19 to 40 weeks’ gestation. Journal of Ultrasound in Medicine. 26 (3), 309-316 (2007).
  13. Nowak, D., Kozłowska, H., Żurada, A., Gielecki, J. Diameter of the ductus arteriosus as a predictor of patent ductus arteriosus (PDA). Central European Journal of Medicine. 6 (4), 418-424 (2011).
  14. Goolaub, D. S., et al. Multidimensional fetal flow imaging with cardiovascular magnetic resonance: a feasibility study. Journal of Cardiovascular Magnetic Resonance. 20 (1), 77 (2018).
  15. Roy, C. W., Seed, M., Kingdom, J. C., Macgowan, C. K. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. Journal of Cardiovascular Magnetic Resonance. 19 (1), 29 (2017).
  16. van Amerom, J. F. P., et al. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magnetic Resonance in Medicine. 79 (1), 327-338 (2018).
  17. Lustig, M., Donoho, D., Pauly, J. M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine. 58 (6), 1182-1195 (2007).
  18. Edwards, D. D., Edwards, J. S. Fetal movement: development and time course. Science. 169 (3940), 95-97 (1970).
  19. Malamateniou, C., et al. Motion-Compensation Techniques in Neonatal and Fetal MR Imaging. American Journal of Neuroradiology. 34 (6), 1124-1136 (2013).
  20. Rutherford, M., et al. MR imaging methods for assessing fetal brain development. Developmental Neurobiology. 68 (6), 700-711 (2008).
  21. Haris, K., et al. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study: Self-Gated Fetal Cardiac MRI with iGRASP. Journal of Magnetic Resonance Imaging. 46 (1), 207-217 (2017).
  22. Glenn, O. A. MR imaging of the fetal brain. Pediatric Radiology. 40 (1), 68-81 (2010).
  23. Rodríguez-Soto, A. E., et al. MRI Quantification of Human Fetal O2 Delivery Rate in the Second and Third Trimesters of Pregnancy. Magnetic Resonance in Medicine. 80 (3), 1148-1157 (2018).
  24. Sameni, R., Clifford, G. D. A Review of Fetal ECG Signal Processing; Issues and Promising Directions. The Open Pacing, Electrophysiology & Therapy Journal. 3, 4-20 (2010).
  25. Millis, R. Advances in Electrocardiograms: Methods and Analysis. BoD – Books on Demand. , (2012).
  26. Jansz, M. S., et al. Metric optimized gating for fetal cardiac MRI. Magnetic Resonance in Medicine. 64 (5), 1304-1314 (2010).
  27. Yamamura, J., et al. Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. Journal of Magnetic Resonance Imaging: JMRI. 35 (5), 1071-1076 (2012).
  28. Larson, A. C., et al. Self-gated cardiac cine MRI. Magnetic Resonance in Medicine. 51 (1), 93-102 (2004).
  29. Knoll, F., Schwarzl, A., Diwoky, C., Sodickson, D. K. gpuNUFFT-An open source GPU library for 3D regridding with direct Matlab interface. Proceedings of the 22nd Annual Meeting of ISMRM. , (2014).
  30. Klein, S., Staring, M., Murphy, K., Viergever, M. A., Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging. 29 (1), 196-205 (2010).
  31. Walker, P. G., et al. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. Journal of Magnetic Resonance Imaging. 3 (3), 521-530 (1993).
  32. Heiberg, E., et al. Design and validation of Segment – freely available software for cardiovascular image analysis. BMC Medical Imaging. 10 (1), 1 (2010).
  33. Inder, T. E., Volpe, J. J. Chapter 17 – Intrauterine, Intrapartum Assessments in the Term Infant. Volpe’s Neurology of the Newborn (Sixth Edition). , 458-483 (2018).
  34. Pelc, N. J., Herfkens, R. J., Shimakawa, A., Enzmann, D. R. Phase contrast cine magnetic resonance imaging. Magnetic Resonance Quarterly. 7 (4), 229-254 (1991).
  35. Steeden, J. A., Atkinson, D., Hansen, M. S., Taylor, A. M., Muthurangu, V. Rapid flow assessment of congenital heart disease with high-spatiotemporal-resolution gated spiral phase-contrast MR imaging. Radiology. 260 (1), 79-87 (2011).
  36. Kowalik, G. T., Knight, D., Steeden, J. A., Muthurangu, V. Perturbed spiral real-time phase-contrast MR with compressive sensing reconstruction for assessment of flow in children. Magnetic Resonance in Medicine. 83 (6), 2077-2091 (2020).
check_url/es/61953?article_type=t

Play Video

Citar este artículo
Goolaub, D. S., Marini, D., Seed, M., Macgowan, C. K. Human Fetal Blood Flow Quantification with Magnetic Resonance Imaging and Motion Compensation. J. Vis. Exp. (167), e61953, doi:10.3791/61953 (2021).

View Video