Summary

Co-Culturing Microglia and Cortical Neurons Differentiated from Human Induced Pluripotent Stem Cells

Published: September 21, 2021
doi:

Summary

This protocol describes a methodology to differentiate microglia from human iPSCs and maintain them in co-culture with iPSC-derived cortical neurons in order to study mechanistic underpinnings of neuroimmune interactions using human neurons and microglia.

Abstract

The ability to generate microglia from human induced pluripotent stem cells (iPSCs) provides new tools and avenues for investigating the role of microglia in health and disease. Furthermore, iPSC-derived microglia can be maintained in co-culture with iPSC-derived cortical neurons, which enable investigations of microglia-neuron interactions that are hypothesized to be dysregulated in a number of neuropsychiatric disorders. Human iPSCs were differentiated to generate microglia using an adapted version of a protocol developed by the Fossati group, and the iPSC-derived microglia were validated with marker analysis and real-time PCR. Human microglia generated using this protocol were positive for the markers CD11C, IBA1, P2RY12, and TMEM119, and expressed the microglial-related genes AIF1, CX3CR1, ITGAM, ITGAX, P2RY12, and TMEM119. Human iPSC-derived cortical neurons that had been differentiated for 30 days were plated with microglia and maintained in co-culture until day 60, when experiments were undertaken. The density of dendritic spines in cortical neurons in co-culture with microglia was quantified under baseline conditions and in the presence of pro-inflammatory cytokines. In order to examine how microglia modulate neuronal function, calcium imaging experiments of the cortical neurons were undertaken using the calcium indicator Fluo-4 AM. Live calcium activity of cortical neurons was obtained using a confocal microscope, and fluorescence intensity was quantified using ImageJ. This report describes how co-culturing human iPSC-derived microglia and cortical neurons provide new approaches to interrogate the effects of microglia on cortical neurons.

Introduction

In the human brain, microglia are the primary innate immune cells1. Brain development is regulated by microglia via two routes: release of diffusible factors and phagocytosis1. Microglia-derived diffusible factors help support myelination, neurogenesis, synaptic formation, maturation, cell death, and cell survival1. Microglia also phagocytize various elements in brain synapses, axons and in both living and dead cells2,3,4,5,6,7,8. Receptors on microglia recognize tags such as calreticulin, ATP, and sialic acid and regulate cellular phagocytosis9,10. In the hippocampus, microglia maintain the homeostasis of neurogenesis through its phagocytic role11.

Synaptic phagocytosis in the dorsolateral geniculate nucleus (dLGN) of the rodent brain has been shown to be regulated by microglia1. In rodents, it has been shown that there are two periods during the development when intense microglial synaptic phagocytosis is observed. The first period occurs during initial synapse formation and the second period occurs when connections are being fine-tuned and pruned12. Other factors that are involved in synaptic pruning are inflammatory proteins and the Class I major histocompatibility complex (MHC1, H2-Kb and Db)13,14. It has been suggested that C1q (complement component 1q) on the microglia colocalizes with MHC1, which triggers synaptic pruning15. Furthermore, mouse studies show that interleukin-33 (IL-33) secreted by astrocytes regulates synapse homeostasis in the thalamus and the spinal cord through its effects on microglia, though this has yet to be investigated in humans13. Microglia secrete a variety of cytokines that help maintain neuronal health, such as tumor necrosis factor α (TNFα), IL-1β, IL-6, IL-10 and interferon-γ (IFN-γ) and these cytokines can modulate dendritic spine and synapse formation16,17,18. There are significant gaps in our knowledge of neuron-microglia interactions during human brain development. Most of our knowledge comes from studies from rodent models, while there is a paucity of information on the temporal and mechanistic aspects of synaptic pruning in the human cortex. Microglia support neuronal survival in the neo-cortex, and other cell types contribute as well1. It is not clear how microglia contribute to this preservation and what the interplay between microglia and the other cell types are. Microglia release several cytokines that affect neuronal and synaptic development but the mechanistic basis of their effects of these cytokines in neurons are largely unknown19,20. In order to develop a more complete understanding of the function of microglia in the human brain, it is critical to explore its interactions with different cell types found in the human brain. This report describes a method to co-culture human iPSC-derived neurons and microglia generated from the same individual. Establishing this methodology will enable well-defined investigations to interrogate the nature of microglia-neuronal interactions and to develop robust in vitro cellular models to study neuroimmune dysfunction in the context of different neurodevelopmental and neuropsychiatric disorders.

The role of microglia in schizophrenia
Synaptic pruning is a major neurodevelopmental process that takes place in the adolescent brain21,22. Multiple lines of evidence suggest that synaptic pruning during this critical period is abnormal in schizophrenia (SCZ)23,24,25,26. SCZ is a chronic, debilitating psychiatric disorder characterized by hallucinations, delusions, disordered thought processes and cognitive deficits23,24. Microglia, the resident macrophages in the brain, play a central role in synaptic pruning25,26. Postmortem and positron emission tomography (PET) studies show evidence for dysfunctional microglial activity in SCZ25,26,27,28,29,30,31,32. Postmortem SCZ brains show well-replicated but subtle differences in the brain – pyramidal neurons in the cortical layer III show decreased dendritic spine density and fewer synapses33,34,35. Synaptic pruning is a process by which superfluous excitatory synaptic connections are eliminated by microglia during adolescence, when SCZ patients usually have their first psychotic break22,36. Postmortem studies show an association between SCZ and microglial activation, with increased density of microglia in SCZ brains, as well as increased expression of proinflammatory genes27. In addition, PET studies of human brains using radioligands for microglial activation show increased levels of activated microglia in the cortex25,26,27,28. Recent genome-wide association studies (GWAS) show that the strongest genetic association for SCZ resides in the major histocompatibility complex (MHC) locus, and this association results from alleles of the complement component 4 (C4) genes that are involved in mediating postnatal synaptic pruning in rodents37. This association has provided additional support for the hypothesis that aberrant pruning by microglia may result in the decreased dendritic spine density seen in SCZ postmortem brains. Investigations of microglial involvement in synaptic pruning in SCZ have so far been limited to indirect studies with PET imaging or inferences from investigations of postmortem brains.

Generating human microglia in the laboratory
Cultured primary mouse microglia have been frequently used in studying microglia, though there are several indications that rodent microglia may not be representative of human microglial anatomy and gene expression (Table 1)38. Several studies have also differentiated microglia directly from blood monocytes through transdifferentiation39,40,41,42. Blood monocyte-derived microglia-like cells exhibit major differences from human microglia in gene and protein expression profile pro-inflammatory responses, and they appear to be more macrophage-like in their biology43. Recent methodological advances now enable the generation of microglia from human iPSCs, which provide opportunities to study live microglia that more accurately resemble the biology of microglia found in the human brain (Table 2). These iPSC-derived microglial cells have been shown to recapitulate the phenotype, gene expression profiles, and functional properties of primary human microglia44,45,46,47,48. This paper provides a method to co-culture human iPSC-derived neurons and microglia generated from the same individual in order to develop personalized in vitro models of neuron-microglia interactions. For this in vitro co-culture model, a microglial differentiation protocol from the Fossati group was adapted (Table 3) and combined with an adapted version of a cortical neuronal generation protocol from the Livesey group (Table 4)49,50.

Protocol

The human iPSCs used in this study were reprogrammed from fibroblasts that had been obtained through informed consent from healthy control subjects, with approval from the institutional review board (IRB). The reprogramming and characterization of iPSCs used in this study (ML15, ML27, ML40, ML56, ML141, ML 250, ML292) were described in a prior study51. 1. Maintenance of iPSCs Prepare a 1:50 dilution of LDEV-free reduced growth factor basement membrane matrix…

Representative Results

Protocol Validation The iPSC-derived microglia were generated from seven iPSC lines over three different rounds of differentiation. Control iPSC lines ML27, ML56, ML292, and ML364 and schizophrenia iPSC lines ML40, ML141, and ML250 were utilized. Characterization of these iPSC lines have been described previously51. These iPSC-derived microglia were validated using ICC and qPCR. Microglia generated from the adapted protocol exhibited typical ramified microglial morphology (<…

Discussion

The development of differentiation methods along different trajectories for pluripotent stem cells have opened many avenues for the investigation of brain function and disease processes53,54,55. Initial studies had focused on the development of specific neuronal cell types hypothesized to be important in specific brain disorders56,57. Recently, brain organoids have also …

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by a National Institute of Mental Health Biobehavioral Research Awards for Innovative New Scientists (BRAINS) Award R01MH113858 (to R.K.), National Institute of Mental Health Clinical Scientist Development Award K08MH086846 (to R.K.), the Doris Duke Charitable Foundation Clinical Scientist Development Award (to R.K.), the Ryan Licht Sang Bipolar Foundation (to R.K.), the Jeanne Marie Lee-Osterhaus Family Foundation and the NARSAD Young Investigator Award from the Brain & Behavior Research Foundation (to A.K.), the Phyllis & Jerome Lyle Rappaport Foundation (to R.K.), the Harvard Stem Cell Institute (to R.K.) and by Steve Willis and Elissa Freud (to R.K.). We would like to thank Dr. Bruce M. Cohen and Dr. Donna McPhie from Harvard Medical School and McLean Hospital for providing us with the fibroblasts used in the study.

Materials

Accutase Sigma-Aldrich A6964
B-27 supplement Gibco 17504044
b-FGF Peprotech 100-18B
BMP-4 Peprotech 120-05ET
Brainphys StemCell Technologies 5790
CD11C antibody Biolegend 337207 Dilution 1:200
Costar Flat Bottom Cell Culture Plates Corning 07-200-83
Ctip2 antibody Abcam ab18465
CUTL1 monoclonal antibody Abnova H00001523-M01
DMEM/F-12, no phenol red Gibco 21041025
dorsomorphin Sigma-Aldrich P5499
DPBS, no calcium, no magnesium Gibco 14190144
Dulbecco's Modified Eagle Medium (DMEM) Sigma-Aldrich D6421
EasYFlask Cell Culture Flasks Nunc 156499
Fisherbrand Cell Lifters Fisher Scientific 08-100-240
Flt3-Ligand Peprotech 300-19
Fluo4-AM Life Technologies F-14201
Geltrex LDEV Free RGF BME 1 ML ThermoFisher Scientific A1413201
Glutamax ThermoFisher Scientific 35050061
GM-CSF Peprotech 300-03
Goat Anti Chicken- IgG H&L (Alexa Fluor 488) Abcam ab150169 Dilution 1:1000
Goat Anti mouse- IgG H&L (Alexa Fluor 568) Invitrogen A-11004 Dilution 1:1000
Goat Anti Rat- IgG H&L (Alexa Fluor 405) Abcam ab175670 Dilution 1:1000
Goat Anti-Guinea pig IgG H&L (Alexa Fluor 405) Abcam ab175678 Dilution 1:1000
Goat Serum Sigma-Aldrich G9023
HBSS Invitrogen 14170120
IBA1 antibody Abcam ab5076 Dilution 1:500
IL-34 Peprotech 200-34
INF-y Peprotech 300-02
KiCqStart SYBR Green Primers Sigma-Aldrich KSPQ12012
Laminin Sigma-Aldrich L2020
LDN193189 Sigma-Aldrich SML0599
Live Cell Imaging Solution Invitrogen A14291DJ
MAP2 antibody Synaptic Systems 188 004
M-CSF Peprotech 300-25
N-2 supplement Gibco 17502001
Neurobasal medium Life Technologies 21103049
NutriStem hPSC XF Medium Biological Industries 01-0005
P2RY12 antibody Biolegend 848002
Paraformaldehyde 16% Fisher Scientific 50-980-488
Penicillin-streptomycin Gibco 15140122
Poly-L-Orthinine Sigma-Aldrich P3655
SATB2 antibody Abcam ab51502
SB431542 Sigma-Aldrich S4317
SCF Stemcell Technologies 78062
SensoPlate 24-Well Glass-Bottom Plate Greiner-Bio 662892
StemPro-34 SFM (1X) Gibco 10639011
TMEM119 antibody Abcam ab185333 Dilution 1:1000
TPO Peprotech 300-18
Triton-X Sigma-Aldrich 9002-93-1
VEGF Peprotech 100-20
Versene ThermoFisher Scientific 15040066
Y-27632 dihydrochloride (ROCK inhibitor) Tocris 1254

Referencias

  1. Lenz, K. M., Nelson, L. H. Microglia and beyond: Innate immune cells as regulators of brain development and behavioral function. Frontiers in Immunology. 9, 698 (2018).
  2. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N., Audinat, E. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. Journal of Neuroscience. 32 (43), 15106-15111 (2012).
  3. Cunningham, C. L., Martínez-Cerdeño, V., Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. Journal of Neuroscience. 33 (10), 4216-4233 (2013).
  4. Hagemeyer, N., et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathologica. 134 (3), 441-458 (2017).
  5. Lenz, K. M., Nugent, B. M., Haliyur, R., McCarthy, M. M. Microglia are essential to masculinization of brain and behavior. Journal of Neuroscience. 33 (7), 2761-2772 (2013).
  6. Miyamoto, A., et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nature Communications. 7 (1), 1-12 (2016).
  7. Pont-Lezica, L., et al. Microglia shape corpus callosum axon tract fasciculation: Functional impact of prenatal inflammation. European Journal of Neuroscience. 39 (10), 1551-1557 (2014).
  8. Schafer, D. P., et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent. Neuron. 74 (4), 691-705 (2012).
  9. Hornik, T. C., Vilalta, A., Brown, G. C. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. Journal of Cell Science. 129 (1), 65-79 (2016).
  10. Brown, G. C., Neher, J. J. Microglial phagocytosis of live neurons. Nature Reviews Neuroscience. 15 (4), 209-216 (2014).
  11. Sierra, A., et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 7 (4), 483-495 (2010).
  12. Schafer, D. P., et al. Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. Elife. 5, 15224 (2016).
  13. Vainchtein, I. D., et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 359 (6381), 1269-1273 (2018).
  14. Datwani, A., et al. Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron. 64 (4), 463-470 (2009).
  15. Färber, K., et al. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. Journal of Neuroscience Research. 87 (3), 644-652 (2009).
  16. Wlodarczyk, A., et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. The EMBO Journal. 36 (22), 3292-3308 (2017).
  17. Lim, S. -. H., et al. Neuronal synapse formation induced by microglia and interleukin 10. PloS One. 8 (11), 81218 (2013).
  18. Squarzoni, P., et al. Microglia modulate wiring of the embryonic forebrain. Cell Reports. 8 (5), 1271-1279 (2014).
  19. Shin, W. H., et al. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia. 46 (2), 142-152 (2004).
  20. Giulian, D., Li, J., Leara, B., Keenen, C. Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochemistry International. 25 (3), 227-233 (1994).
  21. Petanjek, Z., et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences. 108 (32), 13281-13286 (2011).
  22. Giedd, J. N., et al. Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience. 2 (10), 861-863 (1999).
  23. Lewis, D. A., Lieberman, J. A. Catching up on schizophrenia: Natural history and neurobiology. Neuron. 28 (2), 325-334 (2000).
  24. Jablensky, A. Epidemiology of schizophrenia: The global burden of disease and disability. European Archives of Psychiatry and Clinical Neuroscience. 250 (6), 274-285 (2000).
  25. Van Berckel, B. N., et al. Microglia activation in recent-onset schizophrenia: A quantitative (R)-[11C] PK11195 positron emission tomography study. Biological Psychiatry. 64 (9), 820-822 (2008).
  26. Doorduin, J., et al. Neuroinflammation in schizophrenia-related psychosis: a PET study. Journal of Nuclear Medicine. 50 (11), 1801-1807 (2009).
  27. Van Kesteren, C., et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Translational Psychiatry. 7 (3), 1075 (2017).
  28. Bloomfield, P. S., et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: An [11C] PBR28 PET brain imaging study. American Journal of Psychiatry. 173 (1), 44-52 (2016).
  29. Fillman, S., et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Molecular Psychiatry. 18 (2), 206-214 (2013).
  30. Radewicz, K., Garey, L. J., Gentleman, S. M., Reynolds, R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. Journal of Neuropathology & Experimental Neurology. 59 (2), 137-150 (2000).
  31. Steiner, J., et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathologica. 112 (3), 305-316 (2006).
  32. De Picker, L. J., Morrens, M., Chance, S. A., Boche, D. Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Frontiers in Psychiatry. 8, 238 (2017).
  33. Garey, L., et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. Journal of Neurology, Neurosurgery & Psychiatry. 65 (4), 446-453 (1998).
  34. Glantz, L. A., Lewis, D. A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry. 57 (1), 65-73 (2000).
  35. Konopaske, G. T., Lange, N., Coyle, J. T., Benes, F. M. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry. 71 (12), 1323-1331 (2014).
  36. Petanjek, Z., et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences U. S. A. 108 (32), 13281-13286 (2011).
  37. Sekar, A., et al. Schizophrenia risk from complex variation of complement component 4. Nature. 530 (7589), 177-183 (2016).
  38. Landry, R. P., Jacobs, V. L., Romero-Sandoval, E. A., DeLeo, J. A. Propentofylline, a CNS glial modulator does not decrease pain in post-herpetic neuralgia patients: In vitro evidence for differential responses in human and rodent microglia and macrophages. Experimental Neurology. 234 (2), 340-350 (2012).
  39. Sievers, J., Parwaresch, R., Wottge, H. U. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia. 12 (4), 245-258 (1994).
  40. Simard, A. R., Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. The FASEB Journal. 18 (9), 998-1000 (2004).
  41. Asheuer, M., et al. Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proceedings of the National Academy of Sciences U. S. A. 101 (10), 3557-3562 (2004).
  42. Ohgidani, M., et al. Direct induction of ramified microglia-like cells from human monocytes: Dynamic microglial dysfunction in Nasu-Hakola disease. Scientific Reports. 4 (1), 1-7 (2014).
  43. Melief, J., et al. Characterizing primary human microglia: A comparative study with myeloid subsets and culture models: Characterizing primary human microglia. Glia. 64 (11), 1857-1868 (2016).
  44. Muffat, J., et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nature Medicine. 22 (11), 1358-1367 (2016).
  45. Abud, E. M., et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 94 (2), 278-293 (2017).
  46. Pandya, H., et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nature Neuroscience. 20 (5), 753-759 (2017).
  47. Pocock, J. M., Piers, T. M. Modelling microglial function with induced pluripotent stem cells: an update. Nature Reviews Neuroscience. 19 (8), 445-452 (2018).
  48. Haenseler, W., et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports. 8 (6), 1727-1742 (2017).
  49. Douvaras, P., et al. Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Reports. 8 (6), 1516-1524 (2017).
  50. Shi, Y., Kirwan, P., Livesey, F. J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols. 7 (10), 1836-1846 (2012).
  51. Kathuria, A., et al. Transcriptomic landscape and functional characterization of induced pluripotent stem cell-derived cerebral organoids in schizophrenia. JAMA Psychiatry. 77 (7), 745-754 (2020).
  52. Meijering, E., et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A: The journal of the International Society for Analytical Cytology. 58 (2), 167-176 (2004).
  53. Watmuff, B., et al. Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Molecular and Cellular Neuroscience. 73, 96-103 (2016).
  54. Karmacharya, R., Haggarty, S. J. Stem cell models of neuropsychiatric disorders. Molecular and Cellular Neurosciences. 73, 1 (2016).
  55. Karmacharya, R., Kieling, C., Mondelli, V. Integrating stem cell-based experiments in clinical research. European Psychiatry. 63 (1), (2020).
  56. Kathuria, A., et al. Synaptic deficits in iPSC-derived cortical interneurons in schizophrenia are mediated by NLGN2 and rescued by N-acetylcysteine. Translational Psychiatry. 9 (1), 1-13 (2019).
  57. Watmuff, B., Liu, B., Karmacharya, R. Stem cell-derived neurons in the development of targeted treatment for schizophrenia and bipolar disorder. Pharmacogenomics. 18 (5), 471-479 (2017).
  58. Kathuria, A., et al. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Medicine. 12, 1-16 (2020).
  59. Kathuria, A., Lopez-Lengowski, K., Watmuff, B., Karmacharya, R. Comparative transcriptomic analysis of cerebral organoids and cortical neuron cultures derived from human induced pluripotent stem cells. Stem Cells and Development. 29 (21), 1370-1381 (2020).
  60. Pong, S., Lizano, P., Karmacharya, R. Derivation, expansion, cryopreservation and characterization of brain microvascular endothelial cells from human induced pluripotent stem Cells. Journal of Visualized Experiments: Jove. (165), e61629 (2020).
  61. Pong, S., Karmacharya, R., Sofman, M., Bishop, J. R., Lizano, P. The Role of Brain Microvascular Endothelial Cell and Blood-Brain Barrier Dysfunction in Schizophrenia. Complex Psychiatry. 6 (1-2), 30-46 (2020).
  62. Goshi, N., Morgan, R. K., Lein, P. J., Seker, E. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. Journal of Neuroinflammation. 17 (1), 155 (2020).
  63. Roqué, P. J., Costa, L. G. Co-Culture of Neurons and Microglia. Current Protocols in Toxicology. 74 (1), 11-17 (2017).
  64. Warre-Cornish, K., et al. Interferon-γ signaling in human iPSC-derived neurons recapitulates neurodevelopmental disorder phenotypes. Science Advances. 6 (34), (2020).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artículo
Lopez-Lengowski, K., Kathuria, A., Gerlovin, K., Karmacharya, R. Co-Culturing Microglia and Cortical Neurons Differentiated from Human Induced Pluripotent Stem Cells. J. Vis. Exp. (175), e62480, doi:10.3791/62480 (2021).

View Video