Summary

使用功能近红外光谱的协作绘图期间的组同步

Published: August 05, 2022
doi:

Summary

该协议结合了功能性近红外光谱(fNIRS)和基于视频的观察,以在协作绘图任务期间测量四重奏中的人际同步。

Abstract

功能近红外光谱(fNIRS)是一种非侵入性方法,特别适用于测量多个受试者的大脑皮层激活,与研究生态环境中的群体人际互动有关。尽管许多fNIRS系统在技术上提供了同时监测两个以上个体的可能性,但仍需要建立易于实施的设置程序和可靠的范例来跟踪群体互动中的血流动力学和行为反应。该协议结合了fNIRS和基于视频的观察,以测量合作任务期间四重奏中的人际同步。该协议为数据采集和范式设计提供了实用建议,以及说明性数据分析示例的指导原则。该程序旨在评估社会和非社会条件之间大脑和行为人际反应的差异,这些反应受到著名的破冰活动协作面部绘制任务的启发。所描述的程序可以指导未来的研究,使群体自然社会互动活动适应fNIRS环境。

Introduction

人际交往行为是连接和创造移情纽带过程的重要组成部分。先前的研究表明,当生物和行为信号在社会接触期间对齐时,这种行为可以通过同步性的发生来表达。有证据表明,第一次互动的人之间可以发生同步性123。大多数关于社会互动及其潜在神经机制的研究使用单人称或第二人称方法2,4并且对将这些知识转化为群体社会动态知之甚少。在三个或更多个体的群体中评估人际反应仍然是科学研究的挑战。这就有必要将自然条件下日常人类社会互动的复杂环境带到实验室5。

在这种情况下,功能近红外光谱(fNIRS)技术是评估自然背景下人际互动与其大脑相关性之间关系的有前途的工具。与功能性磁共振成像(fMRI)相比,它对参与者活动的限制较少,并且对运动伪影具有弹性67。fNIRS技术的工作原理是评估响应大脑激活的血流动力学效应(氧合和脱氧血红蛋白的血液浓度变化)。这些变化可以通过红外光通过头皮组织的扩散量来测量。以前的研究已经证明了该技术在生态超扫描实验中的灵活性和稳健性,以及扩展应用神经科学知识的潜力68

选择实验任务来自然主义评估群体中社会互动过程的神经相关性是接近应用神经科学研究的关键一步9。文献中已经报道的在群体范式中使用fNIRS的一些例子包括音乐表演10,11,12,课堂互动8和交流13,14,151617

以前的研究尚未探索的方面之一是使用绘画游戏,其主要特征是操纵移情组件来评估社交互动。在这种情况下,经常用于诱导陌生人之间动态社交互动的游戏之一是协作绘画游戏1819。在这个游戏中,纸被分成相等的部分,小组参与者被要求绘制所有成员的共同自画像。最后,每个成员都由几只手以协作方式绘制肖像。

目的是通过引导对小组伙伴的面部的视觉注意力来促进陌生人之间的快速融合。它可以被认为是一种“破冰”活动,因为它能够支持成员之间的好奇心和随之而来的移情过程19.

使用绘图任务的优点之一是其简单性和易于复制20。他们也不需要任何特定的技术培训或技能,如使用音乐表演范式21,222324的研究中所示。这种简单性也使得在社会背景下选择更自然的刺激4,925

除了作为诱导群体社会行为的工具外,绘画还被认为是心理评估的工具26.一些图形投射心理测试,如房屋 – 树 – 人(HTP)27,28,29人物图形绘制 – Sisto Scale 27和动力学家庭绘图30以互补的方式用于定性和定量诊断。他们的结果通常表达无意识的过程,提供有关个人符号系统的线索,从而提供他们对世界,经历,情感等的解释。

绘画的实践使人思考,并有助于为经验和事物创造意义,增加感觉、感觉、思想和行动31.它提供了有关如何感知和处理这些生活经历的线索26.绘画使用视觉代码来理解和交流思想或感受,使它们易于操纵,从而为新的想法和阅读创造可能性31.

在艺术治疗中,绘画是一种处理注意力、记忆力、思想和感受组织的工具32,它可以用作产生社会互动的手段33.

本研究旨在开发一种自然主义实验方案,以使用协作绘画动态评估四重奏人际互动期间的血管和行为大脑反应。在该协议中,提出了对四方的大脑反应(个体和伴侣之间的同步性)和可能的结果测量的评估,例如行为测量(绘画和凝视行为)。目的是提供更多关于社会神经科学的信息。

Protocol

该方法已获得以色列阿尔伯特·爱因斯坦医院(HIAE)伦理委员会的批准,并基于收集神经数据(fNIRS)以及凝视行为数据的程序,在协作绘画体验期间与年轻人一起。所有收集的数据都在Redcap平台上进行管理(见 材料表)。该项目由以色列阿尔伯特·爱因斯坦医院(HIAE)科学诚信委员会审核。18-30岁的年轻人被选为本研究的对象。获得了所有参与者的书面知情同意。 <p class="jove_titl…

Representative Results

该协议适用于由年轻女性(24-27岁)组成的四重奏,她们都是研究生课程的学生(巴西圣保罗以色列阿尔伯特爱因斯坦医院),具有硕士或博士学位。所有参与者都是右撇子,只有一人报告以前有绘画经验。没有受试者有神经系统疾病报告史。 对于量表和心理测试结果,两名受试者(2和4)在焦虑方面得分较高(参考值为17和15)44 ,抑郁症的临界值为9)<sup …

Discussion

这项研究旨在创建一个在自然条件下同时对四个大脑进行超扫描的方案。实验范式使用了不同的绘图任务以及多个结果测量、绘图指标、行为和大脑信号的相关性。该议定书中的关键步骤是考虑其高度复杂性带来的挑战以及维护其生态和自然条件。

视频观察是这项研究的关键。它允许在时间轴上对非语言交流行为进行编码和分割50.视频的定性分析允许观察?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者感谢Instituto do Cérebro(InCe-IIEP)和以色列阿尔伯特爱因斯坦医院(HIAE)对这项研究的支持。特别感谢何塞·贝伦·德·奥利维拉·内托对本文的英文校对。

Materials

2 NIRSport  NIRx Medizintechnik GmbH, Germany Nirsport 88 The equipment belong to InCe ( Instituto do Cérebro – Hospital Israelita Albert Einstein). two continuous-wave systems (NIRSport8x8, NIRx Medical Technologies, Glen Head, NY, USA) with eight LED illumination sources emitting two wavelengths of near-infrared light (760 and 850 nm) and eight optical detectors each. 7.91 Hz. Data were acquired with the NIRStar software version 15.2  (NIRx Medical Technologies, Glen Head, New York) at a sampling rate of 3.472222.
4 fNIRS caps NIRx Medizintechnik GmbH, Germany The blackcaps used in the recordings had a configuration based on the international 10-20
Câmera 360° – Kodak Pix Pro SP360 Kodak Kodak PixPro: https://kodakpixpro.com/cameras/360-vr/sp360
Cameras de suporte – Iphone 8 Apple Iphone 8 Supporting Camera
fOLD toolbox (fNIRS Optodes’ Location Decider) Zimeo Morais, G.A., Balardin, J.B. & Sato, J.R. fNIRS Optodes’ Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Scientific Reports. 8, 3341 (2018). https://doi.org/10.1038/s41598-018-21716-z Version 2.2 (https://github.com/nirx/fOLD-public) Optodes placement was guided by the fOLD toolbox (fNIRS Optodes’ Location Decider, which allows placement of sources and detectors in the international 10–10 system to maximally cover anatomical regions of interest according to several parcellation atlases. The ICBM 152 head model  parcellation was used to generate the montage, which was designed to provide coverage of the most anterior portion of the bilateral prefrontal cortex
Notebook Microsoft Surface Microsoft Notebook receiver of the fNIRS signals
R platform for statistical computing  https://www.r-project.org  R version 4.2.0 R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS
REDCap REDCap is supported in part by the National Institutes of Health (NIH/NCATS UL1 TR000445) REDCap is a secure web application for building and managing online surveys and databases.
software Mangold Interact Mangold International GmbH, Ed.  interact 5.0 Mangold: https://www.mangold-international.com/en/products/software/behavior-research-with-mangold-interact.html. Allows analysis of videos for behavioral outcomes and of autonomic monitoring for emotionally driven physiological changes (may require additional software, such as DataView). Allow the use of different camera types simultaneously and hundreds of variations of coding methods.
software NIRSite NIRx Medizintechnik GmbH, Germany NIRSite 2.0 For creating the montage and help optode placement and location in the blackcaps.
software nirsLAB-2014 NIRx Medizintechnik GmbH, Germany nirsLAB 2014 fNIRS Data Processing
software NIRStar NIRx Medizintechnik GmbH, Germany version 15.2  for fNIRS data aquisition: NIRStar software version 15.2  at a sampling rate of 3.472222
software NIRStim NIRx Medizintechnik GmbH, Germany  For creation and organization of paradigm blocks

Referencias

  1. Feldman, R. The neurobiology of human attachments. Trends in Cognitive Sciences. 21 (2), 80-99 (2017).
  2. Hove, M. J., Risen, J. L. It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition. 27 (6), 949-960 (2009).
  3. Long, M., Verbeke, W., Ein-Dor, T., Vrtička, P. A functional neuro-anatomical model of human attachment (NAMA): Insights from first- and second-person social neuroscience. Cortex. 126, 281-321 (2020).
  4. Redcay, E., Schilbach, L. Using second-person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience. 20 (8), 495-505 (2019).
  5. Babiloni, F., Astolfi, L. Social neuroscience and hyperscanning techniques: Past, present and future. Neuroscience and Biobehavioral Reviews. 44, 76-93 (2014).
  6. Balardin, J. B., et al. Imaging brain function with functional near-infrared spectroscopy in unconstrained environments. Frontiers in Human Neuroscience. 11, 1-7 (2017).
  7. Scholkmann, F., Holper, L., Wolf, U., Wolf, M. A new methodical approach in neuroscience: Assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Frontiers in Human Neuroscience. 7, 1-6 (2013).
  8. Brockington, G., et al. From the laboratory to the classroom: The potential of functional near-infrared spectroscopy in educational neuroscience. Frontiers in Psychology. 9, 1-7 (2018).
  9. Sonkusare, S., Breakspear, M., Guo, C. Naturalistic stimuli in neuroscience: Critically acclaimed. Trends in Cognitive Sciences. 23 (8), 699-714 (2019).
  10. Duan, L., et al. Cluster imaging of multi-brain networks (CIMBN): A general framework for hyperscanning and modeling a group of interacting brains. Frontiers in Neuroscience. 9, 1-8 (2015).
  11. Ikeda, S., et al. Steady beat sound facilitates both coordinated group walking and inter-subject neural synchrony. Frontiers in Human Neuroscience. 11 (147), 1-10 (2017).
  12. Liu, T., Duan, L., Dai, R., Pelowski, M., Zhu, C. Team-work, team-brain: Exploring synchrony and team interdependence in a nine-person drumming task via multiparticipant hyperscanning and inter-brain network topology with fNIRS. NeuroImage. 237, 118147 (2021).
  13. Jiang, J., et al. Leader emergence through interpersonal neural synchronization. Proceedings of the National Academy of Sciences of the United States of America. 112 (14), 4274-4279 (2015).
  14. Nozawa, T., et al. Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. Neuroimage. 133, 484-497 (2016).
  15. Dai, B., et al. Neural mechanisms for selectively tuning in to the target speaker in a naturalistic noisy situation. Nature Communications. 9 (1), 2405 (2018).
  16. Lu, K., Qiao, X., Hao, N. Praising or keeping silent on partner’s ideas: Leading brainstorming in particular ways. Neuropsychologia. 124, 19-30 (2019).
  17. Lu, K., Hao, N. When do we fall in neural synchrony with others. Social Cognitive and Affective Neuroscience. 14 (3), 253-261 (2019).
  18. Edwards, B. . Drawing on the Right Side of the Brain: The Definitive, 4th Edition. , (2012).
  19. Hass-Cohen, N., Findlay, J. C. . Art Therapy & The Neuroscience of Relationship, Creativity, &Resiliency. Skills and Practices. , (2015).
  20. Maekawa, L. N., de Angelis, M. A. A percepção figura-fundo em paciente com traumatismo crânio-encefálico. Arte-Reabilitação. , 57-68 (2011).
  21. Babiloni, C., et al. Simultaneous recording of electroencephalographic data in musicians playing in ensemble. Cortex. 47 (9), 1082-1090 (2011).
  22. Babiloni, C., et al. Brains "in concert": Frontal oscillatory alpha rhythms and empathy in professional musicians. NeuroImage. 60 (1), 105-116 (2012).
  23. Müller, V., Lindenberger, U. Cardiac and respiratory patterns synchronize between persons during choir singing. PLoS ONE. 6 (9), 24893 (2011).
  24. Greco, A., et al. EEG Hyperconnectivity Study on Saxophone Quartet Playing in Ensemble. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2018, 1015-1018 (2018).
  25. Osborne-Crowley, K. Social Cognition in the real world: Reconnecting the study of social cognition with social reality. Review of General Psychology. 24 (2), 144-158 (2020).
  26. Kantrowitz, A., Brew, A., Fava, M. . Proceedings of an interdisciplinary symposium on drawing, cognition and education. , 95-102 (2012).
  27. Petersen, C. S., Wainer, R. . Terapias Cognitivo-Comportamentais para Crianças e Adolescentes. , (2011).
  28. Sheng, L., Yang, G., Pan, Q., Xia, C., Zhao, L. Synthetic house-tree-person drawing test: A new method for screening anxiety in cancer patients. Journal of Oncology. 2019, 5062394 (2019).
  29. Li, C. Y., Chen, T. J., Helfrich, C., Pan, A. W. The development of a scoring system for the kinetic house-tree-person drawing test. Hong Kong Journal of Occupational Therapy. 21 (2), 72-79 (2011).
  30. Ferreira Barros Klumpp, C., Vilar, M., Pereira, M., Siqueirade de Andrade, M. Estudos de fidedignidade para o desenho da família cinética. Revista Avaliação Psicológica. 19 (1), 48-55 (2020).
  31. Adams, E. Drawing to learn learning to draw. TEA: Thinking Expression Action. , (2013).
  32. Bernardo, P. P. . A Prática da Arteterapia. Correlações entre temas e recursos. Vol 1. , (2008).
  33. Cheng, X., Li, X., Hu, Y. Synchronous brain activity during cooperative exchange depends on gender of partner: AfNIRS-based hyperscanning study. Human Brain Mapping. 36 (6), 2039-2048 (2015).
  34. Baker, J., et al. Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Scientific Reports. 6, 1-11 (2016).
  35. Bowie, C. R., Harvey, P. D. Administration and interpretation of the Trail Making Test. Nature Protocols. 1 (5), 2277-2281 (2006).
  36. Valenzuela, M. J., Sachdev, P. Brain reserve and dementia: A systematic review. Psychological Medicine. 4 (36), 441-454 (2006).
  37. Johnson, D. K., Storandt, M., Morris, J. C., Galvin, J. E. Longitudinal study of the transition from healthy aging to Alzheimer disease. Archives of Neurology. 66 (10), 1254-1259 (2009).
  38. Risco, E., Richardson, D. C., Kingstone, A. The dual function of gaze. Current Directions in Psychological Science. 25 (1), 70-74 (2016).
  39. Capozzi, F., et al. Tracking the Leader: Gaze Behavior in Group Interactions. iScience. 16, 242-249 (2019).
  40. Cavallo, A., et al. When gaze opens the channel for communication: Integrative role of IFG and MPFC. NeuroImage. 119, 63-69 (2015).
  41. Kauffeld, S., Meyers, R. A. Complaint and solution-oriented circles: Interaction patterns in work group discussions. European Journal of Work and Organizational Psychology. 18 (3), 267-294 (2009).
  42. Gowen, E., Miall, R. C. Eye-hand interactions in tracing and drawing tasks. Human Movement Science. 25 (4-5), 568-585 (2006).
  43. Marcolino, J., Suzuki, F., Alli, L., Gozzani, J., Mathias, L. Medida da ansiedade e da depressão em pacientes no pré-operatório. Estudo comparativo. Revista Brasileira Anestesiologia. 57 (2), 157-166 (2007).
  44. del Prette, Z., del Prette, A., del Prette, Z., del Prette, A. . Inventario de Habilidades Sociais. , (2009).
  45. Mattos, P., et al. Artigo Original: Adaptação transcultural para o português da escala Adult Self-Report Scale para avaliação do transtorno de déficit de atenção/hiperatividade (TDAH) em adultos. Revista de Psiquiatria Clinica. 33 (4), 188-194 (2006).
  46. Zimeo Morais, G. A., Balardin, J. B., Sato, J. R. fNIRS Optodes’ Location Decider (fOLD): A toolbox for probe arrangement guided by brain regions-of-interest. Scientific Reports. 8 (1), 3341 (2018).
  47. Davidson, R. J. What does the prefrontal cortex "do" in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology. 67 (1-2), 219-233 (2004).
  48. Hessels, R. S. How does gaze to faces support face-to-face interaction? A review and perspective. Psychonomic Bulletin and Review. 27 (5), 856-881 (2020).
  49. Mangold, P. Discover the invisible through tool-supported scientific observation: A best practice guide to video-supported behavior observation. Mindful Evolution. Conference Proceedings. , (2018).
  50. Kandel, E. R. . The Age of Insight. The quest to understand the unconscious in art, mind and brain from Vienna 1900 to the present. , (2012).
  51. Miall, R. C., Nam, S. H., Tchalenko, J. The influence of stimulus format on drawing-A functional imaging study of decision making in portrait drawing. Neuroimage. 102, 608-619 (2014).
  52. Gombrich, E. H. . Art and Illusion: A study in the psychology of pictorial representation. 6th ed. , (2002).
  53. Kirsch, W., Kunde, W. The size of attentional focus modulates the perception of object location. Vision Research. 179, 1-8 (2021).
  54. Deubel, H., Schneidert, W. X. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research. 36 (12), 1827-1837 (1996).
  55. Tchalenko, J. Eye movements in drawing simple lines. Perception. 36 (8), 1152-1167 (2007).
  56. Perdreau, F., Cavanagh, P. The artist’s advantage: Better integration of object information across eye movements. iPerceptions. 4 (6), 380-395 (2013).
  57. Quaresima, V., Bisconti, S., Ferrari, M. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain and Language. 121 (2), 79-89 (2012).
  58. Holleman, G. A., Hessels, R. S., Kemner, C., Hooge, I. T. Implying social interaction and its influence on gaze behavior to the eyes. PLoS One. 15 (2), 0229203 (2020).
  59. Dikker, S., et al. Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology. 27 (9), 1375-1380 (2017).
  60. Gangopadhyay, N., Schilbach, L. Seeing minds: A neurophilosophical investigation of the role of perception-action coupling in social perception. Social Neuroscience. 7 (4), 410-423 (2012).
check_url/es/63675?article_type=t

Play Video

Citar este artículo
Gonçalves da Cruz Monteiro, V., Antunes Nascimento, J., Bazán, P. R., Silva Lacerda, S., Bisol Balardin, J. Group Synchronization During Collaborative Drawing Using Functional Near-Infrared Spectroscopy. J. Vis. Exp. (186), e63675, doi:10.3791/63675 (2022).

View Video