Summary

長距離繊維配向によるマイクロエンジニアリング3Dコラーゲンヒドロゲル

Published: September 07, 2022
doi:

Summary

このプロトコルは、流体の流れ方向に沿って形状を変化させるマイクロ流体チャネルを使用して、3Dコラーゲンヒドロゲル(厚さ<250 μm)内の繊維を整列させるための伸長ひずみ(伸張)を生成する方法を示します。結果として得られるアライメントは数ミリメートルにまたがり、伸張ひずみ速度の影響を受けます。

Abstract

整列コラーゲンI(COL1)繊維は、腫瘍細胞の運動性を導き、内皮細胞の形態に影響を与え、幹細胞の分化を制御し、心臓および筋骨格組織の特徴です。 in vitroで整列した微小環境に対する細胞応答を研究するために、磁気的、機械的、細胞ベース、およびマイクロ流体法を含む、定義されたファイバー整列を有するCOL1マトリックスを生成するためのいくつかのプロトコルが開発されている。これらのうち、マイクロ流体アプローチは、流体の流れや細胞の微小環境を正確に制御するなどの高度な機能を提供します。しかし、高度な in vitro 培養プラットフォーム用に整列したCOL1マトリックスを生成するためのマイクロ流体アプローチは、500 μm未満の距離に伸びるCOL1繊維の薄い「マット」(厚さ<40 μm)に限定されており、3D細胞培養アプリケーションに役立ちません。ここでは、マイクロ流体デバイス内で定義されたファイバーアライメントのミリメートルスケール領域を持つ3D COL1マトリックス(厚さ130〜250 μm)を作製するためのプロトコルを紹介します。このプラットフォームは、細胞培養用のマイクロエンジニアリングマトリックスへの直接アクセスを提供することにより、構造化された組織の微小環境をモデル化するための高度な細胞培養機能を提供します。

Introduction

細胞は細胞外マトリックス(ECM)と呼ばれる複雑な3D線維ネットワークに存在し、その大部分は構造タンパク質コラーゲンI型(COL1)1,2で構成されています。ECMの生物物理学的特性は細胞にガイダンスの手がかりを提供し、それに応じて、細胞はECMマイクロアーキテクチャを再構築します345これらの相互細胞-マトリックス相互作用は、腫瘍環境7,8,9における血管新生および細胞浸潤を促進し、細胞形態10,11,12、分極13、および分化14に影響を与える整列したCOL1ファイバードメイン6を生じ得る。整列したコラーゲン線維はまた、創傷治癒15を促進し、組織発達において重要な役割を果たし16、および長距離細胞コミュニケーションに寄与する17,18。したがって、ネイティブCOL1ファイバーマイクロアーキテクチャをin vitroで複製することは、整列した微小環境に対する細胞応答を研究するための構造化モデルの開発に向けた重要なステップです。

マイクロ流体細胞培養システムは、マイクロ生理学的システム(MPS)を開発するための好ましい技術として確立されています19,20,21,22,23。有利なマイクロスケールスケーリング効果を活用して、これらのシステムは流体の流れを正確に制御し、機械的力の制御された導入をサポートし、マイクロチャネル2124252627内の生化学的微小環境を定義します。MPSプラットフォームは、組織特異的微小環境をモデル化し、多臓器相互作用を研究するために使用されています28。同時に、ヒドロゲルは、インビボで観察されるECMの3D力学および生物学的影響を再現するために広く探求されてきた29,303D培養とマイクロ流体プラットフォームの統合にますます重点が置かれているため、多くのアプローチがマイクロ流体デバイス31、3233COL1ヒドロゲルを組み合わせることができます。しかし、COL1ヒドロゲルをマイクロ流体チャネルに整列させる方法は、幅<1 mmのチャネルの薄い2D「マット」(厚さ<40 μm)に限定されており、整列した3D微小環境で細胞応答をモデル化する可能性は限られています31,34,35,36

マイクロ流体システムにおいて整列した3D COL1ヒドロゲルを達成するために、自己組織化COL1溶液が局所的な伸長流(流れ方向に沿った速度変化)にさらされると、得られたCOL1ヒドロゲルは、それらが経験する伸長ひずみ速度の大きさに正比例する繊維配向の程度を示すことが示されている3738。このプロトコルのマイクロチャネル設計は、2つの点で独特です。第1に、セグメント化された設計により、COL1ソリューションに局所的な伸張ひずみが導入され、第2に、その「ツーピース」構造により、ユーザーはCOL1ファイバーを整列させてからチャネルを分解して、整列したファイバーにオープンフォーマットで直接アクセスできます。このアプローチは、秩序あるCOL1マトリックスを持つ微小生理学的システムを開発するモジュラーマイクロ流体プラットフォームの開発にさらに採用できます。以下のプロトコルは、セグメント化されたマイクロチャネルを作製するプロセスについて説明し、ウシアテロCOL1を整列させるためのチャネルの使用を詳述しています。このプロトコルでは、オープンウェル形式でCOL1上の細胞を培養するための手順も提供し、モジュール式の磁気ベース層を使用してプラットフォームに機能を追加する方法について説明します。

Protocol

1. 2ピースチャンネルとモジュラープラットフォームベースの製作 注:マイクロ流体チャネルは、定義された厚さのポリジメチルシロキサン(PDMS)シートからかみそりでカットされたマイクロ流体チャネル「カットアウト」と、カットアウトに可逆的に結合してチャネルを形成するチャネルカバーの2つの部分で構成されています。チャネルは、媒体リザーバーと?…

Representative Results

自己組織化COL1溶液が断面積の減少を伴うチャネルを流れると、COL1溶液の流れ方向の速度(v x)は、2つのセグメント間のくびれの長さ(∂x)に沿って局所的に大きさ∂v x増加し、ε̇=∂v x/∂xの伸長ひずみ速度(ε̇)になります。伸張ひずみ速度は、図2に示すように、粒子画像速度測定(PIV)を使用して測定される流体速度から計算できます。 <p class="j…

Discussion

整列したファイバーでCOL1マトリックスを生成するためのプロトコルは、磁気的方法、機械的ひずみの直接適用、およびマイクロ流体技術を使用して説明されています47。マイクロ流体アプローチは、生化学的微小環境を正確に制御できる、明確に定義された流れと輸送特性により、マイクロ生理学的システムを作成するために一般的に使用されます。整列したCOL1ファイバー…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

この研究の一部は、国立衛生研究所(授与番号R21GM143658)および国立科学財団(助成金番号2150798)によって支援されました。内容は著者の責任であり、必ずしも資金提供機関の公式見解を表すものではありません。

Materials

(3-Aminopropyl)triethoxysilane, 99% (APTES) Sigma Aldrich 440140-100ML
20 Gauge IT Series Angled Dispensing Tip Jensen Global JG-20-1.0-90
3/16" dia. x 1/16" thick Nickel Plated Magnet KJ Magnetics D31
3M (TC) 12X12-6-467MP DigiKey 3M9726-ND
ACETONE ACS REAGENT ≥99.5% Signa Aldrich 179124-4L
BD-20AC LABORATORY CORONA TREATER Electro-Technic Products 12051A
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent Grade, Alfa Aesar VWR AAJ64100-09
Clear cast acrylic sheet McMaster-Carr 8560K181
Corning 100 mL Trypsin 10x, 2.5% Trypsin in HBSS [-] calcium, magnesium, phenol red, Porcine Parvovirus Tested VWR 45000-666
Countess II Automated Cell Counter Thermo Fisher Scientific AMQAX1000
CT-FIRE software LOCI – University of Wisconsin
EGM-2 Endothelial Cell Growth Medium-2 BulletKit, (CC-3156 & CC-4176), Lonza CC-3162, 500 mL Lonza CC-3162
Glutaraldehyde 50% in aqueous solution, Reagent Grade, Packaging=HDPE Bottle, Size=100 mL VWR VWRV0875-100ML
Graphtec CELITE-50 Graphtec CE LITE-50
HEPES (1 M) Thermo Fisher Scientific 15-630-080
High-Purity Silicone Rubber .010" Thick, 6" X 8" Sheet, 55A Durometer McMaster-Carr 87315K62
Human Umbilical Vein Endothelial cells Thermo Fisher Scientific C0035C
Invitrogen Trypan Blue Stain (0.4%) Thermo Fisher Scientific T10282
Isopropanol Fisher Scientific A4154
Laser cutter Full Spectrum 20×12 H-series
Microfluidics Syringe pump New Era Syringe Pumps NE-1002X
Microman E Single Channel Pipettor, Gilson, Model M1000E Gilson FD10006
Molecular Probes Alexa Fluor 488 Phalloidin Thermo Fisher Scientific A12379
Molecular Probes Hoechst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific H3570
Nutragen Bovine Atelo Collagen Advanced BioMatrix 5010-50ML
Pbs (10x), pH 7.4 VWR 70011044.00
PBS pH 7.4 Thermo Fisher Scientific 10010049.00
Phosphate-buffered saline (PBS, 10x), with Triton X-100 Alfa Aesar J63521
Replacement carrier sheet for graphtec craft ROBO CC330L-20 USCUTTER GRPCARSHTN
Restek Norm-Ject Plastic Syringe 1 mL Luer Slip Restek 22766.00
Silicon wafer University wafer 452
Sodium Hydroxide, ACS, Packaging=Poly Bottle, Size=500 g VWR BDH9292-500G
Sylgard 184 VWR 102092-312
Thermo Scientific Pierce 20x PBS Tween 20 Thermo Fisher Scientific 28352.00

Referencias

  1. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (24), 4195-4200 (2010).
  2. Bosman, F. T., Stamenkovic, I. Functional structure and composition of the extracellular matrix. The Journal of Pathology. 200 (4), 423-428 (2003).
  3. Cox, T. R., Erler, J. T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Disease Models & Mechanisms. 4 (2), 165-178 (2011).
  4. Cross, V. L., et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials. 31 (33), 8596-8607 (2010).
  5. Lu, P., Takai, K., Weaver, V. M., Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology. 3 (12), 005058 (2011).
  6. Piotrowski-Daspit, A. S., Nerger, B. A., Wolf, A. E., Sundaresan, S., Nelson, C. M. Dynamics of tissue-induced alignment of fibrous extracellular matrix. Biophysical Journal. 113 (3), 702-713 (2017).
  7. Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine. 4 (1), 38 (2006).
  8. Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Medicine. 6 (1), 11 (2008).
  9. Szulczewski, J. M., et al. Directional cues in the tumor microenvironment due to cell contraction against aligned collagen fibers. Acta Biomaterialia. 129, 96-109 (2021).
  10. Aubin, H., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials. 31 (27), 6941-6951 (2010).
  11. Gruschwitz, R., et al. Alignment and cell-matrix interactions of human corneal endothelial cells on nanostructured collagen type I matrices. Investigative Ophthalmology & Visual Science. 51 (12), 6303-6310 (2010).
  12. Wang, W. Y., et al. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioengineering. 2 (4), 046107 (2018).
  13. Wang, W. Y., Lin, D., Jarman, E. H., Polacheck, W. J., Baker, B. M. Functional angiogenesis requires microenvironmental cues balancing endothelial cell migration and proliferation. Lab on a Chip. 20 (6), 1153-1166 (2020).
  14. Lanfer, B. The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials. 30 (30), 5950-5958 (2009).
  15. Brauer, E., et al. Collagen fibrils mechanically contribute to tissue contraction in an in vitro wound healing scenario. Advanced Science. 6 (9), 1801780 (2019).
  16. Ingber, D. E. From mechanobiology to developmentally inspired engineering. PhilosophicalTransactions of the Royal Society B: Biological Sciences. 373 (1759), 20170323 (2018).
  17. Wang, H., Abhilash, A. S., Chen, C. S., Wells, R. G., Shenoy, V. B. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophysical Journal. 107 (11), 2592-2603 (2014).
  18. Reinhart-King, C. A., Dembo, M., Hammer, D. A. Cell-cell mechanical communication through compliant substrates. Biophysical Journal. 95 (12), 6044-6051 (2008).
  19. Ahadian, S., et al. Organ-on-a-chip platforms: A convergence of advanced materials, cells, and microscale technologies. Advanced Healthcare Materials. 7 (2), 1700506 (2018).
  20. Hou, X., et al. Interplay between materials and microfluidics. Nature Reviews Materials. 2 (5), 17016 (2017).
  21. Abhyankar, V. V., et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab on a Chip. 8 (9), 1507-1515 (2008).
  22. Abhyankar, V. V., Wu, M., Koh, C. Y., Hatch, A. V. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces. PLoS One. 11 (5), 0156341 (2016).
  23. Williams, M. J., et al. A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines. 10 (6), 360 (2019).
  24. Hsu, M. C., et al. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Scientific Reports. 12, 10769 (2022).
  25. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J., Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab on a Chip. 12 (12), 2156-2164 (2012).
  26. Abhyankar, V. V., Lokuta, M. A., Huttenlocher, A., Beebe, D. J. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip. 6 (3), 389-393 (2006).
  27. Hasan, M. R., et al. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomedical Physics & Engineering Express. 4 (2), 025015 (2018).
  28. Meyvantsson, I., Beebe, D. J. Cell culture models in microfluidic systems. Annual Review of Physical Chemistry. 1, 423-449 (2008).
  29. Ma, Y., et al. Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics. Advanced Functional Materials. 31 (24), 2100848 (2021).
  30. Ma, Y., et al. 3D spatiotemporal mechanical microenvironment: A hydrogel-based platform for guiding stem cell fate. Advanced Materials. 30 (49), 1705911 (2018).
  31. Lee, P., Lin, R., Moon, J., Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical Microdevices. 8 (1), 35-41 (2006).
  32. Del Amo, C., Borau, C., Movilla, N., Asín, J., García-Aznar, J. M. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integrative Biology. 9 (4), 339-349 (2017).
  33. Shi, N., et al. A 3D, magnetically actuated, aligned collagen fiber hydrogel platform recapitulates physical microenvironment of myoblasts for enhancing myogenesis. Small Methods. 5 (6), 2100276 (2021).
  34. Lanfer, B., et al. Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials. 29 (28), 3888-3895 (2008).
  35. Saeidi, N., Sander, E. A., Ruberti, J. W. Dynamic shear-influenced collagen self-assembly. Biomaterials. 30 (34), 6581-6592 (2009).
  36. Saeidi, N., Sander, E. A., Zareian, R., Ruberti, J. W. Production of highly aligned collagen lamellae by combining shear force and thin film confinement. Acta Biomaterialia. 7 (6), 2437-2447 (2011).
  37. Ahmed, A., et al. Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality. Advanced Materials Technologies. 6 (4), 2001186 (2021).
  38. Ahmed, A., et al. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication. 14 (3), 035019 (2022).
  39. Mansouri, M., et al. The modular µSiM reconfigured: Integration of microfluidic capabilities to study in vitro barrier tissue models under flow. Advanced Healthcare Materials. , (2022).
  40. Paten, J. A., et al. Flow-induced crystallization of collagen: a potentially critical mechanism in early tissue formation. ACS Nano. 10 (5), 5027-5040 (2016).
  41. Liu, Y., Eliceiri, K. W. Quantifying fibrillar collagen organization with curvelet transform-based tools. Journal of Visualized Experiments. (165), e61931 (2020).
  42. Bredfeldt, J. S., et al. Automated quantification of aligned collagen for human breast carcinoma prognosis. Journal of Pathology Informatics. 5 (1), 28 (2014).
  43. Bredfeldt, J. S., et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. Journal of Biomedical Optics. 19 (1), 016007 (2014).
  44. Carey, S. P., et al. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integrative Biology. 8 (8), 821-835 (2016).
  45. Carey, S. P., Kraning-Rush, C. M., Williams, R. M., Reinhart-King, C. A. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 33 (16), 4157-4165 (2012).
  46. Ahmed, A., et al. Engineering fiber anisotropy within natural collagen hydrogels. AmericanJournal of Physiology-Cell Physiology. 320 (6), 1112-1124 (2021).
  47. Mohammadi, H., Janmey, P. A., McCulloch, C. A. Lateral boundary mechanosensing by adherent cells in a collagen gel system. Biomaterials. 35 (4), 1138-1149 (2014).

Play Video

Citar este artículo
Ahmed, A., Joshi, I. M., Goulet, M. R., Vidas, J. A., Byerley, A. M., Mansouri, M., Day, S. W., Abhyankar, V. V. Microengineering 3D Collagen Hydrogels with Long-Range Fiber Alignment. J. Vis. Exp. (187), e64457, doi:10.3791/64457 (2022).

View Video