Summary

Establishing a Silicosis Rat Model via Exposure of Whole-Body to Respirable Silica

Published: October 28, 2022
doi:

Summary

This study describes a technique to establish a silicosis rat model with the inhalation of silica through the whole body in an inhalation chamber. The rats with silicosis could closely mimic the pathological process of human silicosis in an easy, cost-effective manner with good repeatability.

Abstract

The major cause of silicosis is the inhalation of silica in the occupational environment. Despite some anatomical and physiological differences, rodent models continue to be an essential tool for studying human silicosis. For silicosis, the classic pathological process needs to be inducible via the inhalation of freshly generated quartz particles, which means specifically inducing human occupational disease. This study described a technique to establish and effectively mimic the pathological dynamic evolution process of silicosis. Further, the technique had good repeatability with no surgery involved. The inhalation exposure system was fabricated, validated, and used for toxicology studies on respirable particle inhalation. The critical components were as follows: (1) bulk dry SiO2 powder generator adjusted with an air-flow controller; (2) 0.3 m3 whole-body inhalation exposure chamber accommodating up to 3 adult rats; (3) a monitoring and control system for regulating oxygen concentration, temperature, humidity, and pressure in real-time; and (4) a barrier and waste disposal system for protecting laboratory technicians and the environment. In summary, the present protocol reports the inhalation via the whole body, and the inhalation chamber created a reliable, reasonable, and repeatable rat silicotic model with low mortality, less injury, and more protection.

Introduction

Silicosis, which is caused by the inhalation of silica, is the most serious occupational disease in China, accounting for more than 80% of the total number of occupational disease reports every year1. The etiology of silicosis is clear, and it can be prevented and controlled, but no effective treatment method is available2. Many drugs have been proven to be effective in basic studies, but they have imprecise clinical effects3,4. Therefore, the pathological and physiological mechanisms of silicosis still need to be explored.

Many studies have used a one-time infusion of silica into the trachea of rats or mice to investigate the pathogenesis of silicosis5,6. Although these rodent silicotic models could be obtained in a short time7, these methods still had challenges, such as animal trauma and high mortality. Some studies have involved instilling stored silica into the lungs to induce a nonspecific lung reaction, but did not mention silicotic nodules in mice8. Furthermore, away from acute silicosis, chronic exposure to silica in occupational environments induced significantly lower pulmonary inflammation and elevated the levels of anti-apoptotic markers, rather than pro-apoptotic markers, in the lungs9. Therefore, a reliable, reasonable, and repeatable animal model is needed to explore the pathogenesis of silicosis further.

The present study describes a method to mimic the disease process of patients with silicosis through silica inhalation via the whole body, air-delivered particles in an inhalation chamber, which comprised an air-delivered silica generator, a whole-body chamber, and a waste disposal system. This method is simple, easy to operate, and effectively mimics the pathological dynamic evolution process of silicosis. Also, many possible mechanisms and the pathogenesis of silicosis are identified using this method10,11,12. The proposed protocol is anticipated to help further investigations in the related field of silicosis research.

Protocol

All animal experiments were conducted according to the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Committee on the Ethics of North China University of Science and Technology (protocol code LX2019033 and 2019-3-3 of approval). Male Wistar rats, 3 weeks of age, were used for the present study. All rats were kept in static cages with wood shavings. The animals were maintained in a 12 h/12 h light/dark cycle, and were provided with food and water ad li…

Representative Results

Using the proposed method, some potential mechanisms and the pathogenesis of silicosis were explored in rats. The schematic of the inhalation chamber is shown in Figure 1. The chamber consisted of an air-delivered silica generator, a whole-body chamber, and a waste disposal system, as previously described17. The pulmonary functions, levels of inflammatory factors in the serum and lung, collagen deposition, and myofibroblast differentiation were reported in the previou…

Discussion

As the leading cause of silicosis, silica plays a decisive role in molding. The silica particles inhaled by patients with pneumoconiosis are fresh, free silica particles produced by mechanical cutting. Silica can generate reactive oxygen species either directly on freshly cleaved particle surfaces or indirectly through its effect on the macrophages25. Therefore, the grinding of silica particles is of high importance. In the proposed protocol, silica was ground with agate mortar for more than 90 mi…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was funded by the National Natural Science Foundation of China (82003406), the Natural Science Foundation of Hebei Province (H2022209073), and the Science and Technology Project of Hebei Education Department (ZD2022127).

Materials

Air detector (compressive atmospheric sampler) Qingdao Xuyu Environmental Protection Technology Co. LTD
Anatomical table  No specific brand is recommended.
Antibody of CD68 Abcam ab201340
DAB ZSGB-BIO ZLI-9018
Electric heating air-blowing drier Shanghai Yiheng Scientific Instrument Co., LTD
Electronic balance OHRUS
Embedding machine leica
Exhaust gas discharge device   HOPE Industry and Trade Co. Ltd.
Generator systems  HOPE Industry and Trade Co. Ltd.
Gloves (thin laboratory gloves) The secco medical
Hematoxylin and eosin BaSO Diagnostics Inc. BA4025
HOPE MED 8050 exposure control apparatus HOPE Industry and Trade Co. Ltd.
Inhalation chamber  HOPE Industry and Trade Co. Ltd.
Injection syringe  No specific brand is recommended.
Light microscope  olympus
Object slide shitai
PV-6000 (HRP-conjugated goat anti-mouse IgG polymer) Beijing Zhongshan Jinqiao Biotechnology Co. Ltd s5631
Silicon dioxide Sigma-Aldrich
Slicing machine leica RM2255
Waste gas treatment device HOPE Industry and Trade Co. Ltd.
Wet box Cooperative plastic Products Factory
Xylol Tianjin Yongda Chemical Reagent Co., LTD

Referencias

  1. Li, J., et al. The burden of pneumoconiosis in China: an analysis from the Global Burden of Disease Study. BMC Public Health. 22 (1), 1114 (2019).
  2. The Lancet Respiratory Medicine. The world is failing on silicosis. The Lancet. Respiratory Medicine. 7 (4), 283 (2019).
  3. Li, T., Yang, X., Xu, H., Liu, H. Early identification, accurate diagnosis, and treatment of silicosis. Canadian Respiratory Journal. 3769134, (2022).
  4. Adamcakova, J., Mokra, D. New insights into pathomechanisms and treatment possibilities for lung silicosis. International Journal of Molecular Sciences. 22 (8), 4162 (2021).
  5. Li, Y., et al. Thalidomide alleviates pulmonary fibrosis induced by silica in mice by inhibiting ER stress and the TLR4-NF-κB pathway. International Journal of Molecular Sciences. 23 (10), 5656 (2022).
  6. Zhang, E., et al. Exosomes derived from bone marrow mesenchymal stem cells reverse epithelial-mesenchymal transition potentially via attenuating Wnt/β-catenin signaling to alleviate silica-induced pulmonary fibrosis. Toxicology Mechanisms and Methods. 31 (9), 655-666 (2021).
  7. Li, S., et al. N-Acetyl-Seryl-Asparyl-Lysyl-Proline regulates lung renin angiotensin system to inhibit epithelial-mesenchymal transition in silicotic mice. Toxicology and Applied Pharmacology. 408, 408 (2020).
  8. Walters, E. H., Shukla, S. D. Silicosis: Pathogenesis and utility of animal models of disease. Allergy. 76 (10), 3241-3242 (2021).
  9. Langley, R. J., Mishra, N. C., Peña-Philippides, J. C., Hutt, J. A., Sopori, M. L. Granuloma formation induced by low-dose chronic silica inhalation is associated with an anti-apoptotic response in Lewis rats. Journal of Toxicology and Environmental Health, Part A. 73 (10), 669-683 (2010).
  10. Jin, F., et al. Ac-SDKP Attenuates activation of lung macrophages and bone osteoclasts in rats exposed to silica by inhibition of TLR4 and RANKL signaling pathways. Journal of Inflammation Research. 14, 1647-1660 (2021).
  11. Xu, H., et al. A new anti-fibrotic target of Ac-SDKP: inhibition of myofibroblast differentiation in rat lung with silicosis. PloS One. 7 (7), e40301 (2012).
  12. Li, S., et al. Ac-SDKP increases α-TAT 1 and promotes the apoptosis in lung fibroblasts and epithelial cells double-stimulated with TGF-β1 and silica. Toxicology and Applied Pharmacology. 369, 17-29 (2019).
  13. Vallyathan, V., Shi, X. L., Dalal, N. S., Irr, W. Generation of free radicals from freshly fractured silica dust. Potential role in acute silica-induced lung injury. The American Review of Respiratory Disease. 138 (5), 1213-1219 (1988).
  14. Khoo, S. Y., Lay, B. P. P., Joya, J., et al. Local anesthetic refinement of pentobarbital euthanasia reduces abdominal writhing without affecting immunohistochemical endpoints in rats. Lab Anim. 2018 (52), 152-162 (2018).
  15. Chooi, K. F., Rajendran, D. B. K., Phang, S. S. G., Toh, H. H. A. The dimethylnitrosamine induced liver fibrosis model in the rat. Journal of Visualized Experiments. 112 (112), (2016).
  16. Valentin, J., Frobert, A., Ajalbert, G., Cook, S., Giraud, M. -. N. Histological quantification of chronic myocardial infarct in rats. Journal of Visualized Experiments. 118 (118), (2016).
  17. Zhang, H., et al. silicosis decreases bone mineral density in rats. Toxicology and Applied Pharmacology. 348, 117-122 (2018).
  18. Zhang, B., et al. Targeting the RAS axis alleviates silicotic fibrosis and Ang II-induced myofibroblast differentiation via inhibition of the hedgehog signaling pathway. Toxicology Letters. 313, 30-41 (2019).
  19. Li, S., et al. Silica perturbs primary cilia and causes myofibroblast differentiation during silicosis by reduction of the KIF3A-repressor GLI3 complex. Theranostics. 10 (4), 1719-1732 (2020).
  20. Gao, X., et al. Pulmonary silicosis alters microRNA expression in rat lung and miR-411-3p exerts anti-fibrotic effects by inhibiting MRTF-A/SRF signaling. Molecular therapy. Nucleic Acids. 20, 851-865 (2020).
  21. Cai, W., et al. Differential expression of lncRNAs during silicosis and the role of LOC103691771 in myofibroblast differentiation induced by TGF-β1. Biomedicine & Pharmacotherapy. 125, (2020).
  22. Cai, W., et al. Transcriptomic analysis identifies upregulation of secreted phosphoprotein 1 in silicotic rats. Experimental and Therapeutic. 21 (6), (2021).
  23. Li, Y., et al. Minute cellular nodules as early lesions in rats with silica exposure via inhalation. Veterinary Sciences. 9 (6), 251 (2022).
  24. Mao, N., et al. Glycolytic reprogramming in silica-induced lung macrophages and silicosis reversed by Ac-SDKP treatment. International Journal of Molecular Sciences. 22 (18), 10063 (2021).
  25. Hamilton, R. F., Thakur, S. A., Holian, A. Silica binding and toxicity in alveolar macrophages. Free Radical Biology and Medicine. 44 (7), 1246-1258 (2008).
  26. Park, R., et al. Exposure to crystalline silica, silicosis, and lung disease other than cancer in diatomaceous earth industry workers: a quantitative risk assessment. Occupational and Environmental. 59 (1), 36-43 (2002).
  27. Honnons, S., Porcher, J. M. In vivo experimental model for silicosis. Journal of Environmental Pathology, Toxicology and. 19 (4), 391-400 (2000).
  28. Lakatos, H. F., et al. Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation. Experimental Lung Research. 32 (5), 181-199 (2006).
  29. Li, B., et al. A suitable silicosis mouse model was constructed by repeated inhalation of silica dust via nose. Toxicology Letters. 353, 1-12 (2021).
  30. Hoy, R. F., Chambers, D. C. Silica-related diseases in the modern world. Allergy. 75 (11), 2805-2817 (2020).
  31. Davis, G. S. Pathogenesis of silicosis: current concepts and hypotheses. Lung. 164 (3), 139-154 (1986).
  32. Moss, O. R., James, R. A., Asgharian, B. Influence of exhaled air on inhalation exposure delivered through a directed-flow nose-only exposure system. Inhalation Toxicology. 18 (1), 45-51 (2006).
check_url/es/64467?article_type=t

Play Video

Citar este artículo
Jin, F., Li, Y., Li, T., Yang, X., Cai, W., Li, S., Gao, X., Yang, F., Xu, H., Liu, H. Establishing a Silicosis Rat Model via Exposure of Whole-Body to Respirable Silica. J. Vis. Exp. (188), e64467, doi:10.3791/64467 (2022).

View Video