Summary

Image-Guided Optical Coherence Tomography to Assess Structural Changes in Rodent Retinas

Published: February 10, 2023
doi:

Summary

The protocol presented here details the procedures of data collection and data analysis for image-guided optical coherence tomography (OCT) and demonstrates its application in multiple rodent models of ocular diseases.

Abstract

Ocular diseases, such as age-related macular degeneration, glaucoma, retinitis pigmentosa, and uveitis, are always accompanied by retinal structural changes. These diseases affecting the fundus always exhibit typical abnormalities in certain cell types in the retina, including photoreceptor cells, retinal ganglion cells, cells in the retinal blood vessels, and cells in the choroidal vascular cells. Noninvasive, highly efficient, and adaptable imaging techniques are required for both clinical practice and basic research. Image-guided optical coherence tomography (OCT) satisfies these requirements because it combines fundus photography and high-resolution OCT, providing an accurate diagnosis of tiny lesions as well as important changes in the retinal architecture. This study details the procedures of data collection and data analysis for image-guided OCT and demonstrates its application in rodent models of choroidal neovascularization (CNV), optic nerve crush (ONC), light-induced retinal degeneration, and experimental autoimmune uveitis (EAU). This technique helps researchers in the eye field to identify rodent retinal structural changes conveniently, reliably, and tractably.

Introduction

Ocular diseases affecting the fundus always exhibit typical abnormalities in certain cell types in the retina, such as photoreceptor cells, retinal ganglion cells, cells in the retinal blood vessels, and cells in the choroidal blood vessels, which may subsequently influence the visual acuity of patients1. To avoid irreversible visual impairment, timely diagnoses and appropriate treatments are required1. Optical coherence tomography (OCT) has been widely used in the clinic to evaluate a range of ocular diseases, including age-related macular degeneration, retinitis pigmentosa, glaucoma, uveitis, and retinal detachment, among others2,3,4. This kind of noninvasive, highly efficient, and adaptable imaging technique is also needed for the timely evaluation of the disease conditions in experimental animals5,6,7,8,9,10.

Image-guided optical coherence tomography (OCT) uses interferometry to produce cross-sectional images of animal retinas at 1.8 µm longitudinal resolution and 2 µm axial resolution. It has at least three advantages in the investigation of retinal architectural changes2,3,4,5,6,7,8,9,10. First, it is a noninvasive technique that allows researchers to dynamically follow the location of interest in the same animal retina5,6,7,8,9,10. Second, this trait substantially reduces the sample size for every experiment3. Meanwhile, it saves considerable time and effort in research projects2,3,4,5,6,7,8,9,10. Third, image-guided OCT acquires colorful fundus images while capturing OCT images, thus providing accurate and reliable results for users.

This manuscript describes the procedures of image collection and data analysis for image-guided OCT and elaborates on its application in mouse and rat models of choroidal neovascularization (CNV)11,12, optic nerve crush (ONC)13,14,15,16, light-induced retinal degeneration17,18,19,20,21, and experimental autoimmune uveitis (EAU)22,23. With this versatile technique, researchers can capture high-resolution OCT images as well as fundus images conveniently and efficiently.

Protocol

All the animal procedures conformed to the Association for Research on Vision and Ophthalmology's statement on the Use of Animals in Ophthalmic and Vision Research and were approved by the Institutional Animal Care and Use Committee of Wenzhou Medical University (WMU). The rats and mice were given free access to water and food with an environmental light intensity of 18 lux on a 12 h dark/light cycle. 1. Preparation of the ocular animal models Mouse laser-induc…

Representative Results

Image-guided OCT can be used to monitor the development of the laser spot in laser-induced choroidal neovascularization (CNV) in mice. As shown in Figure 1, the newborn blood vessels passed through Bruch's membrane as well as the retinal pigment epithelium (RPE) layer and formed a fibrotic scar after laser injury11,12. This lesion spot could be captured under either full-size scanning (Figure 4A) or …

Discussion

This protocol provides instructions for the image collection and thickness measurement of image-guided OCT. By demonstrating the four most popular rodent models of ocular diseases, the researchers found that image-guided OCT provided excellent performance in examining drastic retinal structural alterations. In fact, with high-resolution images, tiny lesions can be found easily in OCT images as well. With the aid of image-guided OCT, a group in the laboratory also found abnormal hyperreflectivity spots within the OPL in a…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

The authors thank the members of the State Key Laboratory of Ophthalmology, Optometry, and Vision Science for their technical support and useful comments regarding the manuscript. This work was supported by grants from the National Natural Science Foundation of China (82101169, 81800857, 81870690), the Zhejiang Provincial Natural Science Foundation of China (LGD22H120001, LTGD23H120001, LTGC23H120001), the Program of Wenzhou Science and Technology Bureau of China (Y20211159), the Guizhou Science and Technology Support Project (Qiankehezhicheng [2020] 4Y146) and the Project of State Key Laboratory of Ophthalmology, Optometry and Vision Science (No. K03-20220205).

Materials

BALB/c mouse Beijing Vital River Laboratory Animal Technology Co., Ltd Animal model preparations
C57BL/6JNifdc mouse Beijing Vital River Laboratory Animal Technology Co., Ltd Animal model preparations
Carbomer Eye Gel Fabrik GmbH Subsidiary of Bausch & Lomb Moisten the cornea 
Complete Freund’s adjuvant Sigma  F5881 EAU experiment
Experimental platform Phoenix Technology Group Animal model preparations
hIRBP161-180 Shanghai Sangon Biological Engineering Technology & Services Co., Ltd. EAU experiment
Ketamine Ceva Sante Animale General anesthesia
Laser box Haag-Streit Group Merilas 532α Animal model preparations
Lewis rat Beijing Vital River Laboratory Animal Technology Co., Ltd Animal model preparations
Mycobacterium Tuberculosis H37RA Sigma  344289 EAU experiment
Phoneix Micron IV with image-guided OCT and image-guided laser Phoenix Technology Group Animal model preparations
Tissue forceps Suzhou Mingren Medical Instrument Co., Ltd MR-F101A-5 Animal model preparations
Tropicamide Phenylephrine Eye Drops SANTEN OY, Japan Eye dilatation
Vannas scissors Suzhou Mingren Medical Instrument Co., Ltd MR-S121A Animal model preparations
Xylazine Ceva Sante Animale General anesthesia

Referencias

  1. Cen, L. -. P., et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nature Communications. 12, 4828 (2021).
  2. Kashani, A. H., et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Progress in Retinal and Eye Research. 60, 66-100 (2017).
  3. Cheng, D., et al. Inner retinal microvasculature damage correlates with outer retinal disruption during remission in Behçet’s posterior uveitis by optical coherence tomography angiography. Investigative Ophthalmology & Visual Science. 59 (3), 1295-1304 (2018).
  4. Lin, R., et al. Relationship between cone loss and microvasculature change in retinitis pigmentosa. Investigative Ophthalmology & Visual Science. 60 (14), 4520-4531 (2019).
  5. Dietrich, M., et al. Using optical coherence tomography and optokinetic response as structural and functional visual system readouts in mice and rats. Journal of Visualized Experiments. (143), e58571 (2019).
  6. Jagodzinska, J., et al. Optical coherence tomography: Imaging mouse retinal ganglion cells in vivo. Journal of Visualized Experiments. (127), e55865 (2017).
  7. Ye, Q., et al. In vivo methods to assess retinal ganglion cell and optic nerve function and structure in large animals. Journal of Visualized Experiments. (180), e62879 (2022).
  8. Mai, X., Huang, S., Chen, W., Ng, T. K., Chen, H. Application of optical coherence tomography to a mouse model of retinopathy. Journal of Visualized Experiments. (179), e63421 (2022).
  9. Allen, R. S., Bales, K., Feola, A., Pardue, M. T. In vivo structural assessments of ocular disease in rodent models using optical coherence tomography. Journal of Visualized Experiments. (161), e61588 (2020).
  10. Kokona, D., Jovanovic, J., Ebneter, A., Zinkernagel, M. S. In vivo imaging of Cx3cr1gfp/gfp reporter mice with spectral-domain optical coherence tomography and scanning laser ophthalmoscopy. Journal of Visualized Experiments. (129), e55984 (2017).
  11. Yan, M., Li, J., Yan, L., Li, X., Chen, J. -. G. Transcription factor Foxp1 is essential for the induction of choroidal neovascularization. Eye and Vision. 9 (1), 10 (2022).
  12. Wolf, A., Herb, M., Schramm, M., Langmann, T. The TSPO-NOX1 axis controls phagocyte-triggered pathological angiogenesis in the eye. Nature Communications. 11, 2709 (2020).
  13. Li, L., et al. Longitudinal morphological and functional assessment of RGC neurodegeneration after optic nerve crush in mouse. Frontiers in Cellular Neuroscience. 14, 109 (2020).
  14. Zhang, Y., et al. Elevating growth factor responsiveness and axon regeneration by modulating presynaptic inputs. Neuron. 103 (1), 39-51 (2019).
  15. Wang, J., et al. Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia. Neuron. 108 (5), 876-886 (2020).
  16. Tian, F., et al. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron. 110 (16), 2607-2624 (2022).
  17. Wu, K. -. C., et al. Deletion of miR-182 leads to retinal dysfunction in mice. Investigative Ophthalmology & Visual Science. 60 (4), 1265-1274 (2019).
  18. Rattner, A., Nathans, J. The genomic response to retinal disease and injury: Evidence for endothelin signaling from photoreceptors to glia. Journal of Neuroscience. 25 (18), 4540-4549 (2005).
  19. Rattner, A., Toulabi, L., Williams, J., Yu, H., Nathans, J. The genomic response of the retinal pigment epithelium to light damage and retinal detachment. Journal of Neuroscience. 28 (39), 9880-9889 (2008).
  20. Hahn, P., et al. Deficiency of Bax and Bak protects photoreceptors from light damage in vivo. Cell Death & Differentiation. 11 (11), 1192-1197 (2004).
  21. Fan, J., et al. Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse. Proceedings of the National Academy of Sciences of the United States of America. 114 (21), 4271-4280 (2017).
  22. Zhou, J., et al. A combination of inhibiting microglia activity and remodeling gut microenvironment suppresses the development and progression of experimental autoimmune uveitis. Biochemical Pharmacology. 180, 114108 (2020).
  23. Okunuki, Y., et al. Retinal microglia initiate neuroinflammation in ocular autoimmunity. Proceedings of the National Academy of Sciences of the United States of America. 116 (20), 9989-9998 (2019).
  24. Dai, X., et al. Rodent retinal microcirculation and visual electrophysiology following simulated microgravity. Experimental Eye Research. 194, 108023 (2020).
  25. Dai, X., et al. Photoreceptor degeneration in a new Cacna1f mutant mouse model. Experimental Eye Research. 179, 106-114 (2019).
  26. Liu, Y., et al. Mouse models of X-linked juvenile retinoschisis have an early onset phenotype, the severity of which varies with genotype. Human Molecular Genetics. 28 (18), 3072-3090 (2019).
  27. Ou, J., et al. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer. Journal of Clinic Investigation. 125 (7), 2891-2903 (2015).
  28. Xiang, L., et al. Depletion of miR-96 delays, but does not arrest, photoreceptor development in mice. Investigative Ophthalmology & Visual Science. 63 (4), 24 (2022).
  29. Huang, X. -. F., et al. Functional characterization of CEP250 variant identified in nonsyndromic retinitis pigmentosa. Human Mutation. 40 (8), 1039-1045 (2019).
  30. Jonnal, R. S., et al. A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future. Investigative Ophthalmology & Visual Science. 57 (9), 51 (2016).
  31. Dong, Z. M., Wollstein, G., Wang, B., Schuman, J. S. Adaptive optics optical coherence tomography in glaucoma. Progress in Retinal and Eye Research. 57, 76-88 (2017).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artículo
Zeng, H., Yang, Q., Chen, J., Ding, L., Rao, F., Lv, J., Xie, B., Xiang, S., Yu, H., Chen, X., Wu, K., Chen, Q., Xiang, L. Image-Guided Optical Coherence Tomography to Assess Structural Changes in Rodent Retinas. J. Vis. Exp. (192), e64783, doi:10.3791/64783 (2023).

View Video