Summary

等离子抛光作为降低3D打印多孔钛合金表面粗糙度的新抛光选项

Published: April 28, 2023
doi:

Summary

等离子抛光是一种很有前途的表面加工技术,特别适用于多孔钛合金工件的3D打印。它可以去除半熔融粉末和烧蚀氧化层,从而有效降低表面粗糙度并提高表面质量。

Abstract

采用3D打印技术制备的模拟小梁骨多孔钛合金植入物具有广阔的应用前景。但是,由于在制造过程中一些粉末粘附在工件表面,因此直接印刷件的表面粗糙度相对较高。同时,由于多孔结构的内部孔隙无法通过常规机械抛光进行抛光,因此需要找到替代方法。等离子抛光技术作为一种表面技术,特别适用于形状复杂、难以机械抛光的零件。它可以有效去除附着在3D打印多孔钛合金工件表面的颗粒和细小飞溅残留物。因此,它可以降低表面粗糙度。首先,使用钛合金粉末用金属3D打印机打印模拟小梁骨的多孔结构;印刷后,进行热处理,去除支撑结构和超声波清洗。然后,进行等离子抛光,包括加入pH设置为5.7的抛光电解液,将机器预热至101.6°C,将工件固定在抛光夹具上,并设置电压(313 V),电流(59 A)和抛光时间(3分钟)。抛光后,通过共聚焦显微镜分析多孔钛合金工件的表面,并测量表面粗糙度。扫描电子显微镜用于表征多孔钛的表面状况。结果表明:整个多孔钛合金工件表面粗糙度由Ra(平均粗糙度)=126.9 μm变为Ra=56.28 μm,小梁结构表面粗糙度由Ra=42.61 μm变为Ra=26.25 μm;同时,去除半熔融粉末和烧蚀氧化层,提高表面质量。

Introduction

钛及钛合金材料因其良好的生物相容性、耐腐蚀性和机械强度1,2,3而被广泛用作牙科和骨科种植材料。然而,由于通过传统加工方法生产的致密钛合金的高弹性模量,这些板不适合骨修复,因为长时间靠近骨表面会导致应力屏蔽和骨脆4,5。因此,在钛合金植入物中应使用模拟骨小梁的多孔微观结构,以将其弹性模量降低到与骨6,7相匹配的水平。许多支架已用于骨科领域,以改善细胞活力,附着,增殖和归巢,成骨分化,血管生成,宿主整合和承重4,8,9多孔金属结构的传统制备方法有结构模板法、缺陷形成法、压缩或超临界二氧化碳法、电沉积法1011等。尽管这些生产技术非常传统,但与3D打印相比,它们偶尔会浪费原材料并具有可观的准备成本12,13。3D打印是一种使用金属或塑料粉末和其他粘合材料通过沉积覆盖层14,15从计算机辅助设计(CAD)模型构建实体3D对象的技术。3D打印在直接定制用于骨科植入物的金属细胞支架方面显示出巨大的潜力,并为制造具有高度互连孔的可定制复杂设计开辟了新的可能性。其中,选择性激光熔化(SLM)是最具代表性的多孔钛植入结构3D打印和制造技术之一16

SLM工艺以钛合金粉末为原料,基本上是粉末熔化并形成结构。因此,大量的半熔融粉末和烧蚀氧化层经常粘附在钛合金植入物的表面,从而导致高表面粗糙度17。多孔钛骨科植入物表面质量差会导致炎症,疲劳性能下降,甚至新的生物风险18 。由于多孔结构的内部孔隙无法通过常规机械抛光进行抛光,因此需要找到替代方法。等离子抛光是一种针对金属工件的新型绿色抛光方法,可以有效地抛光形状复杂的工件而无污染19 。在钛合金植入物后处理领域具有很大的发展潜力。

等离子抛光技术作为一种表面技术,特别适用于形状复杂、不易机械抛光的金属工件。这种抛光选项的总体目标是获得具有低粗糙度的多孔钛合金表面。该技术可以有效去除附着在3D打印制造的多孔钛骨科植入物表面的颗粒和细小飞溅残留物,并降低表面粗糙度20。等离子抛光的原理是基于电流诱导的化学和物理去除相结合的复合反应过程21;整个回路形成瞬态短路,在工件表面20上形成气相等离子体包围层。这个过程突破气体层形成排放通道,冲击工件表面。较高的电流会影响工件表面的凸起部分,从而更快地去除半熔融粉末和烧焦的氧化层。凹凸度不断变化,粗糙表面逐渐变得光滑,提高了工件的表面粗糙度,达到抛光的目的。

同时,该技术是一种绿色加工技术,不会对环境造成污染,与其他抛光方法相比具有很大的优势。常规的机械抛光技术主要包括机械抛光、化学抛光和电化学抛光22。机械抛光是应用最广泛的常规抛光工艺;它具有抛光效率低,对手工劳动要求较高以及无法抛光具有复杂几何形状的零件的缺点。员工受伤的可能性和人为因素导致超出公差的可能性是机械抛光的常见缺点23.与基于利用化学溶液去除工件材料部件的化学抛光不同,电化学抛光利用电流和化学溶液来获得相同的结果。不幸的是,这两个过程都会产生有害气体和液体作为使用的副产品,其成分取决于所使用的酸或碱性化学试剂的强度。因此,不仅在场的工人被认为因暴露而处于危险之中,而且还有可能对环境造成严重破坏24。Aliakseyeu等人25 提出利用等离子抛光来抛光具有简单电解质成分的钛合金工件。他们发现,抛光后的钛样品表面划痕被去除,表面光泽度明显提高。Smyslova等人26 审议了应用等离子抛光技术处理医疗植入物表面的前景。

从理论上讲,等离子抛光技术可用于抛光任何金属零件的结构。它已广泛应用于涂层,金属表面处理行业和3C电子产品等22,27,28。然而,本研究存在一些局限性。首先,稿件只关注3D打印多孔钛合金等离子抛光前后的表面质量和表面粗糙度;不涉及其余更改。其次,我们没有测量和记录热处理后的结果。Jinyoung Kim等人29比较了钛表面改性策略以增强骨整合。另一项研究表明,靶离子诱导等离子体溅射(TIPS)技术可以赋予金属生物植入物表面优异的生物学功能30。为了进一步研究用于3D打印的多孔钛合金的抛光功效和安全性,下一步将是进一步研究SLM零件的其他性能,例如疲劳性能和成骨分化。这些问题需要进一步完善。这项工作与早期的等离子抛光研究不同,因为它专注于3D打印多孔钛合金而不是致密钛合金。因此,不同的制造工艺应采用不同的抛光参数。本文的目的是详细介绍3D打印多孔钛合金的等离子抛光方案,从而降低工件的表面粗糙度。

Protocol

1.钛合金工件的打印和制备 使用SLM打印技术准备由多孔钛合金制成的工件。将STL格式文件导入金属打印机,添加Ti-6Al-4V粉末,安装构建基板,设置刮水片,将激光光斑尺寸设置为70μm,并将层厚度设置为30μm(图1)。 23级Ti-6Al-4V粉末的化学成分如 表1 所示,粉末粒径为15-53μm。 基于Tyson多边形各向异性,利用参数化建模设计模?…

Representative Results

表面形态图3显示了等离子抛光前后多孔钛合金工件表面形貌的SEM结果。我们观察到,在30倍和100倍放大倍率下,等离子抛光前多孔钛合金工件的表面似乎更粗糙(图3A,B)。当放大到500倍时,我们发现在多孔钛合金的表面上可以观察到大量的半熔融粉末和烧蚀氧化层(图3C)。然而,等离子抛光后去除…

Discussion

表面粗糙度用于描述工件表面在小间距范围内的微几何形状的起伏和不均匀程度。以前的许多研究已经报道了如何使用不同的程序抛光金属表面,例如机械抛光,化学抛光,电化学抛光等22,33,34,35。尽管大量研究表明,基于这些常规机械抛光技术具有前瞻性的抛光效果,但3D打印多孔钛合金的抛光方法…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

我要感谢我的导师黄文华为这次实验提供了支持条件和指导。本研究由广东省医科大学学科建设项目(4SG22260G)、广东省高等学校青年创新人才项目(2021KQNCX023)、国家自然科学基金(82205301)和福田医疗健康研究项目(FTWS2022051)资助。

Materials

Confocal microscope: Smartproof-5 ZEISS 4702000198
ConfoMap ST 8.0 ZEISS 4702000198
Electrical discharge machining (EDM) machine: MV1200S Mitsubishi Electric Automation (China) Ltd. 92U3038
Heat treatment furnace: HSQ1-644 Jiangsu Huasu Industrial Furnace Manufacturing CO., LTD. HSD20190812403
Metal 3D printer: Renishaw AM400 Renishaw plc 1HGW89
Middle speed wire-cut machine: HQ-400EZ Suzhou Hanqi CNC Equipment CO., LTD. W40ES20005
Permanent magnet frequency conversion screw air compressor M7-Y75AZ KUNJI MACHINERY(SHANGHAI) MANUFACTURING CO.,LTD.  19055065
Refrigeration compressed air dryer SY-230FG Shanghai TaiLin Compressor Co., Ltd. S190826698
Scanning electron microscope (SEM): JSM-IT100 JEOL (BEIJING) CO., LTD. MP1030004260426
Titanium alloy powder Renishaw plc H-5800-1086-01-A
Ultrasonic cleaning machine: AK-030S Shenzhen Yujie Cleaning Equipment Co., Ltd 30820004
ZEN core v3.0 ZEISS 4702000198

Referencias

  1. Puleo, D. A., Nanci, A. Understanding and controlling bone-implant interface. Biomaterials. 20 (23-24), 2311-2321 (1999).
  2. Schuler, M., Trentin, D., Textor, M., Tosatti, S. G. P. Biomedical interfaces: titanium surface technology for implants and cell carriers. Nanomedicine. 1 (4), 449-463 (2006).
  3. Li, S., et al. Functionally graded Ti-6Al-4V meshes with high strength and energy absorption. Advanced Engineering Materials. 18 (1), 34-38 (2016).
  4. Roseti, L., et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Materials Science & Engineering. C, Materials for Biological Applications. 78, 1246-1262 (2017).
  5. Takizawa, T., et al. Titanium fiber plates for bone tissue repair. Advanced Materials. 30 (4), (2018).
  6. Jung, H. D., et al. Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials. 37, 49-61 (2015).
  7. Jung, H. D., Lee, H., Kim, H. E., Koh, Y. H., Song, J. Fabrication of mechanically tunable and bioactive metal scaffolds for biomedical applications. Journal of Visualized Experiments. (106), e53279 (2015).
  8. Lee, H., et al. Effect of HF/HNO3-treatment on the porous structure and cell penetrability of titanium (Ti) scaffold. Materials & Design. 145, 65-73 (2018).
  9. Lee, H., et al. Functionally assembled metal platform as lego-like module system for enhanced mechanical tunability and biomolecules delivery. Materials & Design. 207, 109840 (2021).
  10. Jang, T. S., Kim, D., Han, G., Yoon, C. B., Jung, H. D. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Biomedical Engineering Letters. 10 (4), 505-516 (2020).
  11. Xu, Y., et al. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Materials. 12, 69-78 (2018).
  12. Kostevšek, N., Rožman, K. &. #. 3. 8. 1. ;., Pečko, D., Pihlar, B., Kobe, S. A comparative study of the electrochemical deposition kinetics of iron-palladium alloys on a flat electrode and in a porous alumina template. Electrochimica Acta. 125, 320-329 (2014).
  13. Tan, K., Tian, M. B., Cai, Q. Effect of bromide ions and polyethylene glycol on morphological control of electrodeposited copper foam. Thin Solid Films. 518 (18), 5159-5163 (2010).
  14. Kumar, K. P. A., Pumera, M. 3D-printing to mitigate COVID-19 pandemic. Advanced Functional Materials. 31 (22), 2100450 (2021).
  15. Palmara, G., Frascella, F., Roppolo, I., Chiappone, A., Chiadò, A. Functional 3D printing: Approaches and bioapplications. Biosensors & Bioelectronics. 175, 112849 (2021).
  16. Tan, X. P., Tan, Y. J., Chow, C. S. L., Tor, S. B., Yeong, W. Y. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science & Engineering. C, Materials for Biological Applications. 76, 1328-1343 (2017).
  17. Wysocki, B., et al. The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response. Materials Science & Engineering. C, Materials for Biological Applications. 95, 428-439 (2019).
  18. Hasan, J., et al. Preventing peri-implantitis: the quest for a next generation of titanium dental implants. ACS Biomaterials Science & Engineering. 8 (11), 4697-4737 (2022).
  19. Bernhardt, A., et al. Surface conditioning of additively manufactured titanium implants and its influence on materials properties and in vitro biocompatibility. Materials Science & Engineering. C, Materials for Biological Applications. 119, 111631 (2021).
  20. Nestler, K., et al. Plasma electrolytic polishing – an overview of applied technologies and current challenges to extend the polishable material range. Procedia CIRP. 42, 503-507 (2016).
  21. Zeidler, H., Boettger-Hiller, F., Edelmann, J., Schubert, A. Surface finish machining of medical parts using plasma electrolytic polishing. Procedia CIRP. 49, 83-87 (2016).
  22. Huang, Y., et al. Principle, process, and application of metal plasma electrolytic polishing: a review. The International Journal of Advanced Manufacturing Technology. 114, 1893-1912 (2021).
  23. Belkin, P. N., Kusmanov, S. A., Parfenov, E. V. Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces. Applied Surface Science Advances. 1, 100016 (2020).
  24. Li, X., Binnemans, K. Oxidative dissolution of metals in organic solvents. Chemical Reviews. 121 (8), 4506-4530 (2021).
  25. Aliakseyeu, Y. G., Korolyov, A. Y., Niss, V. S., Parshuto, A. E., Budnitskiy, A. ES. Electrolyte-plasma polishing of titanium and niobium alloys. Science & Technique. 17 (3), 211-219 (2018).
  26. Smyslova, M. K., Tamindarov, D. R., Plotnikov, N. V., Modina, I. M., Semenova, I. P. Surface electrolytic-plasma polishing of Ti-6Al-4V alloy with ultrafine-grained structure produced by severe plastic deformation. IOP Conference Series: Materials Science and Engineering. 461 (1), 012079 (2018).
  27. Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., Dowey, S. J. Plasma electrolysis for surface engineering. Surface & Coatings Technology. 122 (2-3), 73-93 (1999).
  28. Walsh, F. C., et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the IMF. 87 (3), 122-135 (2009).
  29. Kim, J., et al. Characterization of titanium surface modification strategies for osseointegration enhancement. Metals. 11 (4), 618 (2021).
  30. Lee, M. K., et al. Nano-topographical control of Ti-Nb-Zr alloy surfaces for enhanced osteoblastic response. Nanomaterials. 11 (6), 1507 (2021).
  31. Barba, D., Alabort, E., Reed, R. C. Synthetic bone: Design by additive manufacturing. Acta Biomaterialia. 97, 637-656 (2019).
  32. He, L., et al. The anterior and traverse cage can provide optimal biomechanical performance for both traditional and percutaneous endoscopic transforaminal lumbar interbody fusion. Computers in Biology and Medicine. 131, 104291 (2021).
  33. Zhan, D., et al. Confined chemical etching for electrochemical machining with nanoscale accuracy. Accounts of Chemical Research. 49 (11), 2596-2604 (2016).
  34. Kwon, S. J., Lawson, N. C., McLaren, E. E., Nejat, A. H., Burgess, J. O. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. The Journal of Prosthetic Dentistry. 120 (1), 132-137 (2018).
  35. Li, F., Li, S., Tong, H., Xu, H., Wang, Y. The application of chemical polishing in TEM sample preparation of zirconium alloys. Materials. 13 (5), 1036 (2020).
  36. Wu, Y., Zitelli, J. P., TenHuisen, K. S., Yu, X., Libera, M. R. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials. 32 (4), 951-960 (2011).
  37. Kunzler, T. P., Drobek, T., Schuler, M., Spencer, N. D. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 28 (13), 2175-2182 (2007).

Play Video

Citar este artículo
Lin, Z., Luo, L., Lin, D., Deng, Y., Yang, Y., Huang, X., Wu, T., Huang, W. Plasma Polishing as a New Polishing Option to Reduce the Surface Roughness of Porous Titanium Alloy for 3D Printing. J. Vis. Exp. (194), e65108, doi:10.3791/65108 (2023).

View Video