Summary

Pinças magnéticas de alta velocidade para medições nanomecânicas em elementos sensíveis à força

Published: May 12, 2023
doi:

Summary

Aqui, descrevemos uma configuração de pinça magnética de alta velocidade que realiza medições nanomecânicas em biomoléculas sensíveis à força na taxa máxima de 1,2 kHz. Apresentamos sua aplicação a pinos de DNA e complexos SNARE como sistemas modelo, mas também será aplicável a outras moléculas envolvidas em eventos mecanobiológicos.

Abstract

Pinças magnéticas de molécula única (MTs) têm servido como ferramentas poderosas para interrogar com força biomoléculas, como ácidos nucléicos e proteínas, e, portanto, estão prontas para serem úteis no campo da mecanobiologia. Uma vez que o método geralmente se baseia no rastreamento baseado em imagens de esferas magnéticas, o limite de velocidade no registro e análise de imagens, bem como as flutuações térmicas das contas, há muito tempo dificultam sua aplicação na observação de pequenas e rápidas mudanças estruturais em moléculas-alvo. Este artigo descreve métodos detalhados para a construção e operação de uma configuração MT de alta resolução que pode resolver a dinâmica de nanoescala e milissegundos de biomoléculas e seus complexos. Como exemplos de aplicação, experimentos com pinos de cabelo de DNA e complexos SNARE (máquinas de fusão por membrana) são demonstrados, com foco em como seus estados transitórios e transições podem ser detectados na presença de forças em escala de piconewton. Esperamos que as MTs de alta velocidade continuem a permitir medições nanomecânicas de alta precisão em moléculas que detectam, transmitem e geram forças nas células e, assim, aprofundam nossa compreensão em nível molecular da mecanobiologia.

Introduction

As células sentem e respondem ativamente a estímulos mecânicos. Ao fazer isso, muitas biomoléculas exibem propriedades dependentes da força que permitem mudanças estruturais dinâmicas. Exemplos bem apreciados incluem canais iônicos mecanossensíveis e elementos citoesqueléticos que fornecem às células informações mecânicas importantes de seu ambiente circundante.

Além disso, moléculas que mostram uma natureza única de suporte de força também podem ser consideradas mecanossensíveis em um sentido mais amplo. Por exemplo, a formação local e o derretimento de duplexes de ácidos nucleicos, bem como estruturas de ordem superior, como G-quadruplexes, desempenham papéis cruciais na replicação, transcrição, recombinação e, mais recentemente, edição do genoma. Além disso, algumas proteínas neuronais envolvidas nas comunicações sinápticas desempenham suas funções gerando forças físicas que excedem os níveis de interações intermoleculares típicas. Não importa qual exemplo se estude, investigar a nanomecânica das biomoléculas envolvidas com alta precisão espaço-temporal será altamente útil na revelação de mecanismos moleculares dos processos mecanobiológicosassociados1,2,3.

Métodos de espectroscopia de força de molécula única têm servido como ferramentas poderosas para examinar as propriedades mecânicas de biomoléculas 2,4,5,6. Eles podem monitorar mudanças estruturais em ácidos nucleicos e proteínas simultaneamente com a aplicação de força, examinando assim propriedades dependentes da força. Duas configurações bem conhecidas são as pinças ópticas e as pinças magnéticas (MTs), que empregam esferas do tamanho de mícrons para manipular moléculas 5,6,7,8. Nessas plataformas, o poliestireno (para pinças ópticas) ou esferas magnéticas (para MTs) são amarrados a moléculas-alvo (por exemplo, ácidos nucléicos e proteínas) por meio de “alças” moleculares, tipicamente feitas de fragmentos curtos de DNA de fita dupla (dsDNA). As contas são então movidas para exercer força e fotografadas para rastrear suas localizações que relatam mudanças estruturais nas moléculas-alvo. Pinças ópticas e magnéticas são amplamente intercambiáveis em suas aplicações, mas existem diferenças importantes em suas abordagens para controlar a força. Pinças ópticas são instrumentos de fixação intrinsecamente posicionados que aprisionam contas na posição, por causa das quais a força aplicada flutua quando uma construção alvo sofre mudanças de forma; aumento de extensão, como de desdobramento, afrouxa a amarração e reduz a tensão, e vice-versa. Embora a realimentação ativa possa ser implementada para controlar a força em pinças ópticas, as MTs, em contraste, operam naturalmente como um dispositivo de fixação de força, aproveitando as forças magnéticas estáveis e de campo distante por ímãs permanentes, que também podem resistir à perturbação ambiental.

Apesar de sua longa história e design simples, as MTs ficaram atrás das pinças ópticas em suas aplicações para medições de alta precisão, em grande parte devido aos desafios técnicos no rastreamento rápido de contas. Recentemente, entretanto, vários grupos têm liderado conjuntamente um aprimoramento multifacetado tanto do hardware quanto do software para instrumentos de MT2,9,10,11,12,13,14,15,16,17,18,19 . Neste trabalho, apresentamos um exemplo de tal configuração rodando a 1,2 kHz e descrevemos como usá-lo para realizar medições nanomecânicas em biomoléculas sensíveis à força. Como sistemas modelo, empregamos pinos de cabelo de DNA e complexos SNARE neuronais e examinamos suas rápidas mudanças estruturais no regime de piconewton. Pinos de DNA exibem transições simples de dois estados em uma faixa de força bem definida20,21 e, portanto, servem como modelos de brinquedo para verificar o desempenho de uma pinça. À medida que as proteínas SNARE se agrupam em um complexo sensível à força que impulsiona a fusão da membrana22, elas também têm sido extensivamente estudadas por espectroscopia de força de molécula única 14,23,24,25. Abordagens padrão para analisar dados e extrair informações úteis sobre termodinâmica e cinética são apresentadas. Esperamos que este artigo possa facilitar a adoção de MTs de alta precisão em estudos mecanobiológicos e motivar os leitores a explorar seus próprios sistemas sensíveis à força de interesse.

Protocol

Todos os materiais e equipamentos descritos neste protocolo estão listados na Tabela de Materiais. O software LabVIEW para operar a configuração MT de alta velocidade descrita abaixo, bem como os scripts MATLAB para analisar dados de amostra, são depositados no GitHub (https://github.com/ShonLab/Magnetic-Tweezers) e disponibilizados publicamente. 1. Construção de aparelhos NOTA: O princípio geral da construção MT de alta velo…

Representative Results

Calibração da forçaOs resultados dos dois métodos de medição de força (variância do deslocamento lateral das contas e análise do espectro de potência) diferiram em 0-2 pN (Figura 2G). De acordo com os resultados da Figura 2F, podemos alcançar de forma confiável até 30 pN com ímãs regulares de neodímio. Transições de dois estados de um hairpin de DNA de 8 pbPrimeiramente, inve…

Discussion

Neste trabalho, introduzimos uma configuração de espectroscopia de força de molécula única que pode observar mudanças estruturais de biomoléculas com alta precisão espaço-temporal. A câmera CMOS de alta velocidade usada adquire 1.200 quadros s−1 com resolução de 1.280 x 1.024, permitindo o rastreamento de contas de 1,2 kHz. No entanto, a velocidade das medições é atualmente limitada pelo software de rastreamento de contas, de modo que o ROI é normalmente reduzido a áreas menores em mediçõe…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado pela bolsa da National Research Foundation of Korea (NRF) financiada pelo governo coreano (MSIT) (NRF-2022R1C1C1012176, NRF-2021R1A4A1031754 e NRF- 2021R1A6A1A10042944). S.-H.R. foi apoiado pela subvenção NRF (2021R1C1C2009717).

Materials

Materials for construct synthesis
Agarose gel electrophoresis system Advance Mupid-2plus
DNA ladder Bioneer D-1037
nTaq polymerase Enzynomics P050A
PCR purification kit LaboPass CMR0112
PEGylated SMCC crosslinker / SM(PEG)2 ThermoFisher Scientific 22102 For SNARE–DNA coupling
Primer B Bioneer 5'-Biotin/TCGCCACCATCATTTCCA-3' For 5-kbp force calibration construct and DNA handles
Primer B_hp IDT 5'-Biotin/TTTTTTTTTTGTTCTCTATTT
TTTTAGAGAAC /AP site/ /AP site/ TCGCCACCATCATTTCCA-3'
For hairpin construct
Primer N Bioneer 5'-C6Amine/CATGTGGGTGACGCGAAA-3' For DNA handles
Primer Z Bioneer 5'-Azide/TCGCCACCATCATTTCCA-3' For DNA handles
Primer Z_5k Bioneer 5'-Azide/TTAGAGAGTATGGGTATATGACA
TCG-3'
For 5-kbp force calibration construct
Primer Z_hp Bioneer 5'-Azide/GTGGCAGCATGACACC-3' For hairpin construct
SYBR Safe DNA Gel Stain ThermoFisher Scientific S33102
λ-DNA Bioneer D-2510 Template strand for PCR
DNA sequences for SNARE proteins
6×His-tagged SNAP-25b (2-206; capitalized) in pET28a homemade tggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctat
gagaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcca
gggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagcgg
aagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGGCAGC
AGCCATCATCATCATCATCACA
GCAGCGGCCTGGTGCCGCGC
GGCAGCCATACTAGCGGAGAT
ATCGCCGAGGACGCAGACAT
GCGCAATGAGCTGGAGGAGA
TGCAGAGGAGGGCTGACCAG
CTGGCTGATGAGTCCCTGGA
AAGCACCCGTCGCATGCTGC
AGCTGGTTGAAGAGAGTAAA
GATGCTGGCATCAGGACTTT
GGTTATGTTGGATGAGCAAG
GCGAACAACTGGAACGCATT
GAGGAAGGGATGGACCAAAT
CAATAAGGACATGAAAGAAG
CAGAAAAGAATTTGACGGAC
CTAGGAAAATTCGCCGGCCT
TGCCGTGGCCCCCGCCAAC
AAGCTTAAATCCAGTGATGC
TTACAAAAAAGCCTGGGGC
AATAATCAGGATGGAGTAGT
GGCCAGCCAGCCTGCCCG
TGTGGTGGATGAACGGGAG
CAGATGGCCATCAGTGGTG
GCTTCATCCGCAGGGTAAC
AAATGATGCCCGGGAAAAT
GAGATGGATGAGAACCTG
GAGCAGGTGAGCGGCATC
ATCGGAAACCTCCGCCAC
ATGGCTCTAGACATGGGCA
ATGAGATTGACACCCAGA
ATCGCCAGATCGACAGGA
TCATGGAGAAGGCTGATT
CCAACAAAACCAGAATTG
ATGAAGCCAACCAACGTG
CAACAAAGATGCTGGGAA
GTGGTTAAggatccgaattcgag
ctccgtcgacaagcttgcggccgcactc
gagcaccaccaccaccaccactgagat
ccggctgctaacaaagcccgaaagga
agctgagttggctgctgccaccgctgag
caataactagcataaccccttggggcct
ctaaacgggtcttgaggggttttttgctga
aaggaggaactatatccggat
6×His-tagged VAMP2 (2-97, L32C/I97C; capitalized) in pET28a homemade tggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctatg
agaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcca
gggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagc
ggaagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGGCAGC
AGCCATCATCATCATCATCAC
AGCAGCGGCCTGGTGCCGC
GCGGCAGCCATATGGCAGAT
CTCTCGGCTACCGCTGCCAC
CGTCCCGCCTGCCGCCCCG
GCCGGCGAGGGTGGCCCCC
CTGCACCTCCTCCAAATCTTA
CCAGTAACAGGAGATGCCAG
CAGACCCAGGCCCAGGTGG
ATGAGGTGGTGGACATCATG
AGGGTGAATGTGGACAAGGT
CCTGGAGCGAGACCAGAAG
CTATCGGAACTGGATGATCG
CGCAGATGCCCTCCAGGCA
GGGGCCTCCCAGTTTGAAA
CAAGTGCAGCCAAGCTCAA
GCGCAAATACTGGTGGAAA
AACCTCAAGATGATGTGCTA
Aggatccgaattcgagctccgtcg
acaagcttgcggccgcactcgagcaccacca
ccaccaccactgagatccggctgctaacaaa
gcccgaaaggaagctgagttggctgctgcca
ccgctgagcaataactagcataaccccttgg
ggcctctaaacgggtcttgaggggttttttg
ctgaaaggaggaactatatccggat
6×His-tagged ΔN-VAMP2 (49–96; capitalized) and Syntaxin-1A (191–267, I202C/I266C; capitalized) in pETDuet-1 homemade ggggaattgtgagcggataacaattcccctc
tagaaataattttgtttaactttaagaagga
gatataccATGGGCAGCAGCCATCA
TCATCATCATCACAGCAGCGG
CCTGGAAGTTCTGTTCCAGGG
GCCCGGTAATGTGGACAAGGT
CCTGGAGCGAGACCAGAAGCT
ATCGGAACTGGATGATCGCGC
AGATGCCCTCCAGGCAGGGGC
CTCCCAGTTTGAAACAAGTGC
AGCCAAGCTCAAGCGCAAATAC
TGGTGGAAAAACCTCAAGATGAT
GTAAgcggccgcataatgcttaagtcgaaca
gaaagtaatcgtattgtacacggccgcataa
tcgaaattaatacgactcactataggggaat
tgtgagcggataacaattccccatcttagta
tattagttaagtataagaaggagatatacat
ATGGCCCTCAGTGAGATCGAGA
CCAGGCACAGTGAGTGCATC
AAGTTGGAGAACAGCATCCG
GGAGCTACACGATATGTTCAT
GGACATGGCCATGCTGGTGG
AGAGCCAGGGGGAGATGATT
GACAGGATCGAGTACAATGTG
GAACACGCTGTGGACTACGTG
GAGAGGGCCGTGTCTGACACC
AAGAAGGCCGTCAAGTACCAG
AGCAAGGCACGCAGGAAGAA
GTGCATGATCTAActcgagtc
tggtaaagaaaccgctgctgcgaaatttgaa
cgccagcacatggactcgtctactagcgcag
cttaattaacctaggctgctgccaccgctga
gcaataactagcataaccccttggggcctct
aaacgggtcttgaggggttttttgctgaaag
gaggaactatatccggattggcgaatgggac
gcgccctgtagcggcgcattaagcgcggcgg
gtgtggtggttacgcgcagcgtgaccgctac
acttgccagcgccctagcgcccgctcctttc
gctttcttcccttcctttctcgccacgttcg
ccggctttccccgtcaagctctaaatcgggg
gctccctttagggttccgatttagtgcttta
cggcacctcgaccccaaaaaacttgattagg
gtgatggttcacgtagtgggccatcgccctg
atagacggtttttcgccctttgacgttggag
tccacgttctttaatagtggactcttgttcc
aaactggaacaacactcaaccctatctcggt
ctattcttttgatttataagggattttgccg
atttcggcctattggttaaaaaatgagctga
tttaacaaaaatttaacgcgaattttaacaa
aatattaacgtttacaatttctggcggcacg
atggcatgagattatcaaaaaggatcttcac
ctagatccttttaaattaaaaatgaagtttt
aaatcaatctaaagtatatatgagtaaactt
ggtctgacagttaccaatgcttaatcagtga
ggcacctatctcagcgatctgtctatttcgt
tcatccatagttgcctgactccccgtcgtgt
agataactacgatacgggagggcttaccatc
tggccccagtgctgcaatgataccgcgagac
ccacgctcaccggctccagatttatcagcaa
taaaccagccagccggaagggccgagcgca
gaagtggtcctgcaactttatccgcctccatc
cagtctattaattgttgccgggaagctagag
taagtagttcgccagttaatagtttgcgcaa
cgttgttgccattgctacaggcatcgtggtg
tcacgctcgtcgtttggtatggcttcattca
gctccggttcccaacgatcaaggcgagttac
atgatcccccatgttgtgcaaaaaagcggtt
agctccttcggtcctccgatcgttgtcagaa
gtaagttggccgcagtgttatcactcatggt
tatggcagcactgcataattctcttactgtc
atgccatccgtaagatgcttttctgtgactg
gtgagtactcaaccaagtcattctgagaata
gtgtatgcggcgaccgagttgctcttgcccg
gcgtcaatacgggataataccgcgccacata
gcagaactttaaaagtgctcatcattggaaa
acgttcttcggggcgaaaactctcaaggatc
ttaccgctgttgagatccagttcgatgtaac
ccactcgtgcacccaactgatcttcagcatc
ttttactttcaccagcgtttctgggtgagcaaa
aacaggaaggcaaaatgccgcaaaaaagg
gaataagggcgacacggaaatgttgaatact
catactcttcctttttcaatcatgattgaag
catttatcagggttattgtctcatgagcgga
tacatatttgaatgtatttagaaaaataaac
aaataggtcatgaccaaaatcccttaacgtg
agttttcgttccactgagcgtcagaccccgt
agaaaagatcaaaggatcttcttgagatcct
ttttttctgcgcgtaatctgctgcttgcaaa
caaaaaaaccaccgctaccagcggtggtttg
tttgccggatcaagagctaccaactcttttt
ccgaaggtaactggcttcagcagagcgcaga
taccaaatactgtccttctagtgtagccgta
gttaggccaccacttcaagaactctgtagca
ccgcctacatacctcgctctgctaatcctgt
taccagtggctgctgccagtggcgataagtc
gtgtcttaccgggttggactcaagacgatag
ttaccggataaggcgcagcggtcgggctgaa
cggggggttcgtgcacacagcccagcttgga
gcgaacgacctacaccgaactgagataccta
cagcgtgagctatgagaaagcgccacgcttccc
gaagggagaaaggcggacaggtatccggta
agcggcagggtcggaacaggagagcgcac
gagggagcttccagggggaaacgcctggtatc
tttatagtcctgtcgggtttcgccacctctg
acttgagcgtcgatttttgtgatgctcgtca
ggggggcggagcctatggaaaaacgccagc
aacgcggcctttttacggttcctggccttttg
ctggccttttgctcacatgttctttcctgcg
ttatcccctgattctgtggataaccgtatta
ccgcctttgagtgagctgataccgctcgccgc
agccgaacgaccgagcgcagcgagtcagtg
agcgaggaagcggaagagcgcctgatgcgg
tattttctccttacgcatctgtgcggtatttc
acaccgcatatatggtgcactctcagtacaa
tctgctctgatgccgcatagttaagccagta
tacactccgctatcgctacgtgactgggtca
tggctgcgccccgacacccgccaacacccgc
tgacgcgccctgacgggcttgtctgctcccg
gcatccgcttacagacaagctgtgaccgtct
ccgggagctgcatgtgtcagaggttttcacc
gtcatcaccgaaacgcgcgaggcagctgcgg
taaagctcatcagcgtggtcgtgaagcgatt
cacagatgtctgcctgttcatccgcgtccag
ctcgttgagtttctccagaagcgttaatgtc
tggcttctgataaagcgggccatgttaaggg
cggttttttcctgtttggtcactgatgcctc
cgtgtaagggggatttctgttcatgggggta
atgataccgatgaaacgagagaggatgctca
cgatacgggttactgatgatgaacatgcccg
gttactggaacgttgtgagggtaaacaactg
gcggtatggatgcggcgggaccagagaaaaa
tcactcagggtcaatgccagcgcttcgttaa
tacagatgtaggtgttccacagggtagccag
cagcatcctgcgatgcagatccggaacataa
tggtgcagggcgctgacttccgcgtttccag
actttacgaaacacggaaaccgaagaccatt
catgttgttgctcaggtcgcagacgttttgc
agcagcagtcgcttcacgttcgctcgcgtat
cggtgattcattctgctaaccagtaaggcaa
ccccgccagcctagccgggtcctcaacgaca
ggagcacgatcatgctagtcatgccccgcgc
ccaccggaaggagctgactgggttgaaggct
ctcaagggcatcggtcgagatcccggtgcct
aatgagtgagctaacttacattaattgcgtt
gcgctcactgcccgctttccagtcgggaaac
ctgtcgtgccagctgcattaatgaatcggcc
aacgcgcggggagaggcggtttgcgtattgg
gcgccagggtggtttttcttttcaccagtga
gacgggcaacagctgattgcccttcaccgcc
tggccctgagagagttgcagcaagcggtcca
cgctggtttgccccagcaggcgaaaatcctg
tttgatggtggttaacggcgggatataacat
gagctgtcttcggtatcgtcgtatcccacta
ccgagatgtccgcaccaacgcgcagcccgga
ctcggtaatggcgcgcattgcgcccagcgcc
atctgatcgttggcaaccagcatcgcagtgg
gaacgatgccctcattcagcatttgcatggt
ttgttgaaaaccggacatggcactccagtcg
ccttcccgttccgctatcggctgaatttgat
tgcgagtgagatatttatgccagccagccag
acgcagacgcgccgagacagaacttaatggg
cccgctaacagcgcgatttgctggtgaccca
atgcgaccagatgctccacgcccagtcgcgt
accgtcttcatgggagaaaataatactgttg
atgggtgtctggtcagagacatcaagaaata
acgccggaacattagtgcaggcagcttccac
agcaatggcatcctggtcatccagcggatag
ttaatgatcagcccactgacgcgttgcgcga
gaagattgtgcaccgccgctttacaggcttc
gacgccgcttcgttctaccatcgacaccacc
acgctggcacccagttgatcggcgcgagatt
taatcgccgcgacaatttgcgacggcgcgtg
cagggccagactggaggtggcaacgccaatc
agcaacgactgtttgcccgccagttgttgtg
ccacgcggttgggaatgtaattcagctccgc
catcgccgcttccactttttcccgcgttttc
gcagaaacgtggctggcctggttcaccacgc
gggaaacggtctgataagagacaccggcata
ctctgcgacatcgtataacgttactggtttc
acattcaccaccctgaattgactctcttccg
ggcgctatcatgccataccgcgaaaggtttt
gcgccattcgatggtgtccgggatctcgacg
ctctcccttatgcgactcctgcattaggaag
cagcccagtagtaggttgaggccgttgagca
ccgccgccgcaaggaatggtgcatgcaagga
gatggcgcccaacagtcccccggccacgggg
cctgccaccatacccacgccgaaacaagcgc
tcatgagcccgaagtggcgagcccgatcttc
cccatcggtgatgtcggcgatataggcgcca
gcaaccgcacctgtggcgccggtgatgccgg
ccacgatgcgtccggcgtagaggatcgagat
cgatctcgatcccgcgaaattaatacgactc
actata
SNAP-25b (1–206, all C to A; capitalized) in pET28a homemade tggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctatg
agaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcc
agggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagc
ggaagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGCCGA
GGACGCAGACATGCGCAATG
AGCTGGAGGAGATGCAGAGG
AGGGCTGACCAGCTGGCTGA
TGAGTCCCTGGAAAGCACCC
GTCGCATGCTGCAGCTGGTT
GAAGAGAGTAAAGATGCTGG
CATCAGGACTTTGGTTATGTT
GGATGAGCAAGGCGAACAAC
TGGAACGCATTGAGGAAGGG
ATGGACCAAATCAATAAGGAC
ATGAAAGAAGCAGAAAAGAAT
TTGACGGACCTAGGAAAATTC
GCCGGCCTTGCCGTGGCCCC
CGCCAACAAGCTTAAATCCAG
TGATGCTTACAAAAAAGCCTG
GGGCAATAATCAGGATGGAGT
AGTGGCCAGCCAGCCTGCCC
GTGTGGTGGATGAACGGGAG
CAGATGGCCATCAGTGGTGGC
TTCATCCGCAGGGTAACAAAT
GATGCCCGGGAAAATGAGATG
GATGAGAACCTGGAGCAGGT
GAGCGGCATCATCGGAAACCT
CCGCCACATGGCTCTAGACAT
GGGCAATGAGATTGACACCCA
GAATCGCCAGATCGACAGGAT
CATGGAGAAGGCTGATTCCAA
CAAAACCAGAATTGATGAAGC
CAACCAACGTGCAACAAAGAT
GCTGGGAAGTGGTTAA
ctcgagcaccaccaccaccaccactgag
atccggctgctaacaaagcccgaaagga
agctgagttggctgctgccaccgctgagc
aataactagcataaccccttggggcctc
taaacgggtcttgaggggttttttgctgaa
aggaggaactatatccggat
Materials for protein purificaiton
2-Mercaptoethanol SIGMA M3148-25ML
Agar LPS Solution AGA500
Ampicillin, Sodium salt PLS AC1043-005-00
Chloramphenicol PLS CR1023-050-00
Competent cells (E. coli) Novagen 70956 Rosetta(DE3)pLysS
Glycerol SIGMA G5516-500ML
HEPES SIGMA H4034-100G
Hydrochloric acid / HCl SIGMA 320331-500ML
Imidazole SIGMA I2399-100G
Isopropyl β-D-1-thiogalactopyranoside / IPTG SIGMA 10724815001
Kanamycin Sulfate PLS KC1001-005-02
Luria-Bertani (LB) Broth LPS Solution LB-05
Ni-NTA resin Qiagen 30210
PD MiniTrap G-25 (desalting column) Cytiva GE28-9180-07 For instructions, see: https://www.cytivalifesciences.com/en/us/shop/chromatography/prepacked-columns/desalting-and-buffer-exchange/pd-minitrap-desalting-columns-with-sephadex-g-25-resin-p-06174
Phenylmethylsulfonyl fluoride / PMSF ThermoFisher Scientific 36978
Plasmids for SNARE proteins cloned in house N/A Available upon request
Protease inhibitor cocktail genDEPOT P3100
Sodium chloride SIGMA S5886-500G
Sodium phosphate dibasic / Na2HPO4 SIGMA S7907-100G
Sodium phosphate monobasic / NaH2PO4 SIGMA S3139-250G
Tris(2-carboxyethyl)phosphine / TCEP SIGMA C4706-2G
Trizma base SIGMA T1503-250G
Materials for sample assembly
Biotin-PEG-SVA LAYSAN BIO BIO-PEG-SVA-5K-100MG & MPEG-SVA-5K-1g For PEGylation
Dibenzocyclooctyne-amine / DBCO-NH2 SIGMA 761540-10MG For bead coating
Double-sided tape 3M 136 For flow cell assembly
Epoxy glue DEVCON S-208 For flow cell assembly
Glass coverslip for bottom surface VWR 48393-251 Rectangular, 60×24 mm, #1.5
Glass coverslip for top surface VWR 48393-241 Rectangular, 50×24 mm, #1.5
Magnetic bead ThermoFisher Scientific 14301 Dynabeads M-270 Epoxy, 2.8 μm
mPEG-SVA LAYSAN BIO mPEG-SVA 1g For PEGylation
N,N-Dimethylformamide / DMF SIGMA D4551-250ML For bead coating
N-[3-(trimethoxysilyl)propyl]ethylenediamine SIGMA 104884-100ML For PEGylation
Neutravidin ThermoFisher Scientific 31000 For sample tethering
Phosphate buffered saline / PBS, pH 7.2 PLS PR2007-100-00
Plastic syringe Norm-ject A5 5 ml, luer tip
Polyethylene Tubing SCI BB31695-PE/4 PE-60
Reference bead SPHEROTECH SVP-30-5 Streptavidin-coated Polystyrene Particles; 3.0-3.4 µm
Syringe needle Kovax 21G-1 1/4'' 21 G
Syringe pump KD SCIENTIFIC 788210
Equipment for magnetic tweezer instrument
1-axis motorized microtranslation stage PI M-126.PD1 For vertical positioning of magnets
2-axis manual translation stage ST1 LEE400 For alignment of magnets to the optical axis
Acrylic holder for magnets DaiKwang Precision custum order Drawing available upon request
Frame grabber Active Silicon AS-FBD-4XCXP6-2PE8
High-speed CMOS camera Mikrotron EoSens 3CXP
Inverted microscope Olympus IX73P2F-1-2
Neodymium magnets LG magnet ND 10x10x12t Dimension: 10 mm × 10 mm × 12 mm; two needed
Objective lens Olympus UPLXAPO100XO Oil-immersion, NA 1.45
Objective lens nanopositioner Mad City Labs Nano-F100S
Rotation stepper motor AUTONICS A3K-S545W For rotating magnets
Superluminescent diode QPHOTONICS QSDM-680-2 680 nm
Software
LabVIEW National Instruments v20.0f1
MATLAB MathWorks v2021a

Referencias

  1. Le, S., Liu, R., Lim, C. T., Yan, J. Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers. Methods. 94, 13-18 (2016).
  2. Choi, H. -. K., Kim, H. G., Shon, M. J., Yoon, T. -. Y. High-resolution single-molecule magnetic tweezers. Annual Review of Biochemistry. 91 (1), 33-59 (2022).
  3. Yang, T., Park, C., Rah, S. -. H., Shon, M. J. Nano-precision tweezers for mechanosensitive proteins and beyond. Molecules and Cells. 45 (1), 16-25 (2022).
  4. Neuman, K. C., Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods. 5 (6), 491-505 (2008).
  5. De Vlaminck, I., Dekker, C. Recent advances in magnetic tweezers. Annual Review of Biophysics. 41 (1), 453-472 (2012).
  6. Bustamante, C. J., Chemla, Y. R., Liu, S., Wang, M. D. Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers. 1, 25 (2021).
  7. Gosse, C., Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophysical Journal. 82 (6), 3314-3329 (2002).
  8. Smith, S. B., Finzi, L., Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 258 (5085), 1122-1126 (1992).
  9. Lansdorp, B. M., Tabrizi, S. J., Dittmore, A., Saleh, O. A. A high-speed magnetic tweezer beyond 10,000 frames per second. Review of Scientific Instruments. 84 (4), 044301 (2013).
  10. Cnossen, J. P., Dulin, D., Dekker, N. H. An optimized software framework for real-time, high-throughput tracking of spherical beads. Review of Scientific Instruments. 85 (10), 103712 (2014).
  11. Dulin, D., et al. High spatiotemporal-resolution magnetic tweezers: calibration and applications for DNA dynamics. Biophysical Journal. 109 (10), 2113-2125 (2015).
  12. Huhle, A., et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nature Communications. 6 (1), 5885 (2015).
  13. Popa, I., et al. A HaloTag anchored ruler for week-long studies of protein dynamics. Journal of the American Chemical Society. 138 (33), 10546-10553 (2016).
  14. Shon, M. J., Kim, H., Yoon, T. -. Y. Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Nature Communications. 9 (1), 3639 (2018).
  15. Tapia-Rojo, R., Eckels, E. C., Fernández, J. M. Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proceedings of the National Academy of Sciences. 116 (16), 7873-7878 (2019).
  16. Löf, A., et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proceedings of the National Academy of Sciences. 116 (38), 18798-18807 (2019).
  17. Tapia-Rojo, R., Alonso-Caballero, A., Fernandez, J. M. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. Science Advances. 6 (21), (2020).
  18. Rieu, M., et al. Parallel, linear, and subnanometric 3D tracking of microparticles with Stereo Darkfield Interferometry. Science Advances. 7 (6), (2021).
  19. Rieu, M., Valle-Orero, J., Ducos, B., Allemand, J. -. F., Croquette, V. Single-molecule kinetic locking allows fluorescence-free quantification of protein/nucleic-acid binding. Communications Biology. 4 (1), 1083 (2021).
  20. Woodside, M. T., et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proceedings of the National Academy of Sciences. 103 (16), 6190-6195 (2006).
  21. Camunas-Soler, J., Ribezzi-Crivellari, M., Ritort, F. Elastic properties of nucleic acids by single-molecule force spectroscopy. Annual Review of Biophysics. 45 (1), 65-84 (2016).
  22. Südhof, T. C., Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science. 323 (5913), 474-477 (2009).
  23. Gao, Y., et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science. 337 (6100), 1340-1343 (2012).
  24. Zorman, S., et al. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. eLife. 3, e03348 (2014).
  25. Zhang, Y., Hughson, F. M. Chaperoning SNARE folding and assembly. Annual Review of Biochemistry. 90 (1), 581-603 (2021).
  26. Vilfan, I. D., Lipfert, J., Koster, D. A., Lemay, S. G., Dekker, N. H. Magnetic tweezers for single-molecule experiments. Handbook of Single-Molecule Biophysics. , 371-395 (2009).
  27. You, H., Le, S., Chen, H., Qin, L., Yan, J. Single-molecule manipulation of G-quadruplexes by magnetic tweezers. Journal of Visualized Experiments. (127), e56328 (2017).
  28. Lipfert, J., Hao, X., Dekker, N. H. Quantitative modeling and optimization of magnetic tweezers. Biophysical Journal. 96 (12), 5040-5049 (2009).
  29. Dulin, D., Barland, S., Hachair, X., Pedaci, F. Efficient illumination for microsecond tracking microscopy. PLoS One. 9 (9), e107335 (2014).
  30. Klaue, D., Seidel, R. Torsional stiffness of single superparamagnetic microspheres in an external magnetic field. Physical Review Letters. 102 (2), 028302 (2009).
  31. Shon, M. J., Rah, S. -. H., Yoon, T. -. Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Science Advances. 5 (6), 1697 (2019).
  32. Czerwinski, F., Richardson, A. C., Oddershede, L. B. Quantifying noise in optical tweezers by Allan variance. Optics Express. 17 (15), 13255-13269 (2009).
  33. Lansdorp, B. M., Saleh, O. A. Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. Review of Scientific Instruments. 83 (2), 025115 (2012).
  34. Ostrofet, E., Papini, F. S., Dulin, D. High spatiotemporal resolution data from a custom magnetic tweezers instrument. Data in Brief. 30, 105397 (2020).
  35. Yu, Z., et al. A force calibration standard for magnetic tweezers. Review of Scientific Instruments. 85 (12), 123114 (2014).
  36. Strick, T. R., Allemand, J. -. F., Bensimon, D., Bensimon, A., Croquette, V. The elasticity of a single supercoiled DNA molecule. Science. 271 (5257), 1835-1837 (1996).
  37. Daldrop, P., Brutzer, H., Huhle, A., Kauert, D. J., Seidel, R. Extending the range for force calibration in magnetic tweezers. Biophysical Journal. 108 (10), 2550-2561 (2015).
  38. te Velthuis, A. J. W., Kerssemakers, J. W. J., Lipfert, J., Dekker, N. H. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophysical Journal. 99 (4), 1292-1302 (2010).
  39. Ostrofet, E., Papini, F. S., Dulin, D. Correction-free force calibration for magnetic tweezers experiments. Scientific Reports. 8 (1), 15920 (2018).
  40. Seol, Y., Li, J., Nelson, P. C., Perkins, T. T., Betterton, M. D. Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 µm. Biophysical Journal. 93 (12), 4360-4373 (2007).
  41. Burnham, D. R., Vlaminck, I. D., Henighan, T., Dekker, C. Skewed Brownian fluctuations in single-molecule magnetic tweezers. PLoS One. 9 (9), 108271 (2014).
  42. Paul, T., Myong, S. Protocol for generation and regeneration of PEG-passivated slides for single-molecule measurements. STAR Protocols. 3 (1), 101152 (2022).
  43. Lee, H. -. W., et al. Profiling of protein-protein interactions via single-molecule techniques predicts the dependence of cancers on growth-factor receptors. Nature Biomedical Engineering. 2 (4), 239-253 (2018).
  44. Cheezum, M. K., Walker, W. F., Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal. 81 (4), 2378-2388 (2001).
  45. Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nature Methods. 9 (7), 724-726 (2012).
  46. Woodside, M. T., Block, S. M. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annual Review of Biophysics. 43 (1), 19-39 (2014).
  47. Evans, E., Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophysical Journal. 72 (4), 1541-1555 (1997).
  48. Zhang, Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Science. 26 (7), 1252-1265 (2017).
  49. Chen, H., et al. Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA. Biophysical Journal. 100 (2), 517-523 (2011).
  50. Cho, S., et al. Tension exerted on cells by magnetic nanoparticles regulates differentiation of human mesenchymal stem cells. Biomaterials Advances. 139, 213028 (2022).
  51. Shon, M. J., Cohen, A. E. Nano-mechanical measurements of protein-DNA interactions with a silicon nitride pulley. Nucleic Acids Research. 44 (1), 7 (2016).
  52. Cheng, Y. Single-particle cryo-EM-How did it get here and where will it go. Science. 361 (6405), 876-880 (2018).
  53. Jumper, J., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 596 (7873), 583-589 (2021).
  54. Neupane, K., et al. Direct observation of transition paths during the folding of proteins and nucleic acids. Science. 352 (6282), 239-242 (2016).
  55. Choi, H. -. K., et al. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. Science. 366 (6469), 1150-1156 (2019).
  56. Kim, C., et al. Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nature Communications. 12 (1), 3206 (2021).
check_url/es/65137?article_type=t

Play Video

Citar este artículo
Park, C., Yang, T., Rah, S., Kim, H. G., Yoon, T., Shon, M. J. High-Speed Magnetic Tweezers for Nanomechanical Measurements on Force-Sensitive Elements. J. Vis. Exp. (195), e65137, doi:10.3791/65137 (2023).

View Video