Summary

海蛾中亲和纯化纤维蛋白溶解酶

Published: June 02, 2023
doi:

Summary

在这里,我们提出了一种来自 海蜥蜴 纤维蛋白溶解酶的亲和纯化方法,该方法简单、廉价且高效。

Abstract

海蕊纤溶酶(sFE)是一种新型纤溶剂,既能将纤溶酶原激活成 溶酶,又能直接降解纤维蛋白,与传统溶栓剂相比具有很大的优势。然而,由于缺乏结构信息,所有sFE的纯化程序都基于多步色谱纯化,过于复杂和昂贵。本文首次基于sFE的晶体结构开发了sFE亲和纯化方案;它包括粗样品和赖氨酸/精氨酸-琼脂糖基质亲和色谱柱的制备、亲和纯化和纯化 sFE 的表征。按照该方案,一批sFE可以在1天内纯化。此外,纯化的sFE的纯度和活性分别增加到92%和19,200 U/mL。因此,这是一种简单、廉价且高效的sFE纯化方法。该方案的开发对于sFE和其他类似药物的进一步利用具有重要意义。

Introduction

血栓形成是对公共卫生的主要威胁,尤其是在 Covid-19 全球大流行之后12。临床上,许多纤溶酶原激活剂(PAs),如组织型纤溶酶原激活剂(tPA)和尿激酶(UK),已被广泛用作溶栓药物。PA可以将患者的纤溶酶原激活为活性纤溶酶以降解纤维蛋白。因此,它们的溶栓效率受到患者纤溶酶原状态34的严重限制。纤维蛋白溶解剂,如金属蛋白酶纤溶酶和丝氨酸纤溶酶,是另一种临床溶栓药物,还包括纤溶酶(FE),如纤溶酶,可直接溶解凝块,但被各种纤溶酶抑制剂迅速灭活5。随后,报道了一种新型的纤维蛋白溶解剂,它不仅可以通过将纤溶酶原激活为纤溶酶,还可以直接降解纤维蛋白6-来自古代花生蠕虫Sipunculus nudussFE)的纤维蛋白溶解酶6来溶解血栓6。与传统的溶栓药物相比,这种双功能赋予了sFE其他优势,特别是在纤溶酶原状态异常方面。与其他双功能纤维蛋白溶解剂789相比,sFE在药物开发方面表现出几个优势,包括安全性特别是对于口服药物。这是因为海蜥的生物安全性和生物相容性已经确立10.

与从微生物、蚯蚓和蘑菇中分离的其他天然纤维蛋白溶解剂类似,从裸蚯蚓中纯化sFE非常复杂,包括组织匀浆、硫酸铵沉淀、脱盐、阴离子交换色谱、疏水相互作用色谱和分子筛等多个阶段101112.这样的净化系统不仅要依靠熟练的技能和昂贵的材料,还需要几天的时间才能完成整个过程。因此,一个简单的sFE纯化方案对sFE的进一步发展具有重要意义。幸运的是,两个sFE晶体(PDB:8HZP;PDB:8HZO)已成功获得(见补充文件1补充文件2)。通过结构分析和分子对接实验,我们发现sFE的催化核心可以特异性地与含有精氨酸或赖氨酸残基的靶标结合。

本文首次提出了一种基于sFE晶体结构的亲和纯化系统。通过遵循该方案,可以在单个亲和纯化阶段从粗提取物中纯化高纯度和高活性sFE。这里开发的方案不仅对sFE的大规模制备很重要,而且可用于纯化其他纤维蛋白溶解剂。

Protocol

1. 准备 样品处理仔细解剖新鲜的 裸粒链球菌 (100克)并收集肠道及其内部液体。 加入 300 mL Tris-HCl 缓冲液(0.02 M,pH 7.4)进行均质化(1,000 rpm,60 s)。 将匀浆冻融3倍。 离心样品(10,956× g,0.5小时,4°C)并收集上清液。将样品储存在4°C直至进一步使用。 蛋白质沉淀将上清液与饱和硫酸铵溶液(九体积?…

Representative Results

按照该方案,提取粗组织裂解物,建立精氨酸-琼脂糖基质和赖氨酸-琼脂糖基质亲和色谱柱,得到纯化的sFE,分别用SDS-PAGE和纤维蛋白板测定纯化sFE的纯度和纤维蛋白溶解活性。 离心后,收集的上清液为透明的棕褐色粘稠液体。当该上清液与饱和硫酸铵溶液(九体积)混合时开始沉淀。静置12 h后,在管底形成重沉淀。当用Tris-HCl缓冲液重悬时,蛋白质沉淀迅速消失并溶解在缓?…

Discussion

由于sFE的确切基因序列不可用,目前使用的sFE是从新鲜 的S. nudus14中提取的。此外,文献报道的sFE纯化程序复杂且昂贵,因为它们基于sFE的一些一般特征,如分子量,等电点,离子强度和极性1516。迄今为止,尚未报道sFE的亲和纯化方案。本研究基于sFE晶体结构知识,成功开发了sFE亲和纯化方案。与报道的纯化方法相比,该亲?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

本研究由厦门市科技局(3502Z20227197)和福建省科技局(编号:2019J01070,No.2021Y0027)资助。

Materials

30% Acrylamide-Bisacrylamide (29:1) Biosharp
2-Mercaptoethanol Solarbio
Agarose G-10 Biowest
Ammonium persulfate SINOPHARM
Ammonium sulfate SINOPHARM
Arginine-Sepharose 4B Solarbio Arginine-agarose matrix
Bromoxylenol Blue (BPB) Solarbio
Fast Silver Stain Kit Beyotime
Fibrinogen Merck
Glycine Solarbio
Hydrochloric acid SINOPHARM
Kinase RHAWN
Lysine-Sepharose 4B Solarbio Lysine-agarose matrix
N,N,N',N'-Tetramethylethylenediamine (TEMED) Sigma-Aldrich
Prestained Color Protein Marker (10-170 kD) Beyotime
Sodium chloride SINOPHARM
Sodium Dodecyl Sulfonate (SDS) Sigma-Aldrich
Sodium hydroxide SINOPHARM
Thrombin Meilunbio
Tris(Hydroxymethyl) Aminomethane Solarbio
Tris(Hydroxymethyl) Aminomethane Hydrochloride Solarbio
Equipment
AKT Aprotein Purification System pure GE
Automatic Vertical Pressure Steam Sterilizer MLS-3750 SANYO
Chemiluminescence Imaging System GE
Constant Flow Pump BT-100 QITE
Constant Temperature Incubator JINGHONG
Desktop Refrigerated Centrifuge 3-30KS SIGMA
DHG Series Heating and Drying Oven DGG-9140AD SENXIN
Electric Glass Homogenizer DY89-II SCIENTZ
Electronic Analytical Balance DENVER
Electro-Thermostatic Water Bath DK-S12 SENXIN
Horizontal Decolorization Shaker Kylin-Bell
Ice Machine AF 103 Scotsman
KQ-500E Ultrasonic Cleaner ShuMei
Magnetic Stirrer Zhi wei
Micro Refrigerated Centrifuge H1650-W Cence
Microwave Oven Galanz
Milli-Q Reference Millipore
Pipettor Thermo Fisher Scientific
Precision Desktop pH Meter Sartorious
Small-sized Vortex Oscillator Kylin-Bell
Vertical Electrophoresis System Bio-Rad
Consumable Material 
200 µL PCR Tube (200 µL) Axygene
Centrifuge Tube (1.5 mL) Biosharp
Centrifuge Tube (5 mL) Biosharp
Centrifuge Tube (50 mL) NEST
Centrifuge Tube (7 mL) Biosharp
Culture Dish (60 mm) NEST
Filter Membrane (0.22 µm) Millex GP
Parafilm Bemis
Pipette Tip (1 mL ) KIRGEN
Pipette Tip (10 µL) Axygene
Pipette Tip (200 µL) Axygene
Special Indicator Paper TZAKZY
Ultra Centrifugal Filter Unit (15 mL 3 KDa) Millipore
Ultra Centrifugal Filter Unit (4 mL 3 KDa) Millipore
Universal pH Indicator SSS Reagent

Referencias

  1. Rosell, A., et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 41 (2), 878-882 (2021).
  2. Schultz, N. H., et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. The New England. Journal of Medicine. 384 (22), 2124-2130 (2021).
  3. von Kaulla, K. N. Urokinase-induced fibrinolysis of human standard clots. Nature. 184 (4695), 1320-1321 (1959).
  4. Van de Werf, F., et al. Coronary thrombolysis with tissue-type plasminogen activator in patients with evolving myocardial infarction. The New England Journal of Medicine. 310 (10), 609-613 (1984).
  5. Schaller, J., Gerber, S. S. The plasmin-antiplasmin system: structural and functional aspects. Cellular and Molecular Life Sciences. 68 (5), 785-801 (2011).
  6. Ge, Y. -. H., et al. A novel antithrombotic protease from marine worm Sipunculus nudus. International Journal of Molecular Sciences. 19 (10), 3023 (2018).
  7. Liu, X., et al. Purification and characterization of a novel fibrinolytic enzyme from culture supernatant of Pleurotus ostreatus. Journal of Microbiology and Biotechnology. 24 (2), 245-253 (2014).
  8. Choi, J. -. H., Sapkota, K., Kim, S., Kim, S. -. J. Starase: A bi-functional fibrinolytic protease from hepatic caeca of Asterina pectinifera displays antithrombotic potential. Biochimie. 105, 45-57 (2014).
  9. Liu, H., et al. A novel fibrinolytic protein From Pheretima vulgaris: purification, identification, antithrombotic evaluation, and mechanisms investigation. Frontiers in Molecular Biosciences. 8, 772419 (2022).
  10. Wu, Y., et al. Antioxidant, hypolipidemic and hepatic protective activities of polysaccharides from Phascolosoma esculenta. Marine Drugs. 18 (3), 158 (2020).
  11. . Preparation and application of natural fibrinolytic enzyme from peanut worm Available from: https://patents.google.com/patent/CN109295042A/en (2019)
  12. Li, W., Yuan, M., Wu, Y., Xu, R. Identification of genes expressed differentially in female and male gametes of Sipunculus nudus. Aquaculture Research. 51 (9), 3780-3789 (2020).
  13. Ossipow, V., Laemmlii, U. K., Schibler, U. A simple method to renature DNA-binding proteins separated by SDS-polyacrylamide gel electrophoresis. Nucleic Acids Research. 21 (25), 6040-6041 (1993).
  14. Hsu, T., Ning, Y., Gwo, J., Zeng, Z. DNA barcoding reveals cryptic diversity in the peanut worm Sipunculus nudus. Molecular Ecology Resources. 13 (4), 596-606 (2013).
  15. Abiko, Y., Iwamoto, M., Shimizu, M. Plasminogen-plasmin system. I. Purification and properties of human plasminogen. The Journal of Biochemistry. 64 (6), 743-750 (1968).
  16. Abiko, Y., Iwamoto, M., Shimizu, M. Plasminogen-plasmin system. II. Purification and properties of human plasmin. The Journal of Biochemistry. 64 (6), 751-757 (1968).
  17. Wiman, B. Affinity-chromatographic purification of human α2-antiplasmin. The Biochemical Journal. 191 (1), 229-232 (1980).
  18. Sandbjerg Hansen, M., Clemmensen, I. Partial purification and characterization of a new fast-acting plasmin inhibitor from human platelets. Evidence for non-identity with the known plasma proteinase inhibitors. The Biochemical Journal. 187 (1), 173-180 (1980).
  19. Pietrocola, G., Rindi, S., Nobile, G., Speziale, P. Purification of human plasma/cellular fibronectin and fibronectin fragments. Fibrosis. 1627, 309-324 (2017).
  20. Nabiabad, H. S., Yaghoobi, M. M., Javaran, M. J., Hosseinkhani, S. Expression analysis and purification of human recombinant tissue type plasminogen activator (rt-PA) from transgenic tobacco plants. Preparative Biochemistry and Biotechnology. 41 (2), 175-186 (2011).
  21. Shearin, T. V., Pizzo, S. V., Gonzalez-Gronow, M. Molecular abnormalities of human plasminogen isolated from synovial fluid of rheumatoid arthritis patients. Journal of Molecular Medicine. 75 (5), 378-385 (1997).

Play Video

Citar este artículo
Tang, M., Lin, H., Hu, C., Yan, H. Affinity Purification of a Fibrinolytic Enzyme from Sipunculus nudus. J. Vis. Exp. (196), e65631, doi:10.3791/65631 (2023).

View Video