Summary

LPS和ATP诱导的PMA分化THP-1巨噬细胞死亡及其验证

Published: May 03, 2024
doi:

Summary

该方案基于 LPS 和 ATP 诱导的 PMA 分化 THP-1 巨噬细胞的死亡。我们使用流式细胞术分析膜联蛋白V和7-AAD双染色以检测细胞死亡,使用整个细胞并采用扫描电子显微镜观察细胞膜形态。

Abstract

细胞死亡是所有生物体的基本过程。该方案建立了脂多糖 (LPS) 和三磷酸腺苷 (ATP) 诱导的佛波醇-12-肉豆蔻酸酯-13-乙酸酯 (PMA) 分化的人单核细胞 (THP-1) 巨噬细胞中的脂质沉积模型,以观察细胞死亡。LPS联合ATP是一种经典的炎症诱导方法,常用于研究焦亡,但细胞凋亡和坏死性凋亡也对LPS/ATP的刺激有反应。在正常情况下,磷脂酰丝氨酸仅局限于质膜的内小叶中。然而,在细胞焦亡、凋亡和坏死性凋亡的早期阶段,细胞膜保持完整并暴露于磷脂酰丝氨酸,而在后期阶段,细胞膜失去其完整性。本文采用流式细胞术分析膜联蛋白V和7-氨基放线菌素D(AAD)双染色,检测全细胞的细胞死亡情况。结果显示,在用LPS/ATP刺激后,大量细胞死亡。使用扫描电子显微镜,我们观察了单个细胞中细胞死亡的可能形式。结果表明,在用LPS/ATP刺激后,细胞可能会发生焦亡、凋亡或坏死性凋亡。该协议的重点是观察用LPS / ATP刺激后巨噬细胞的死亡。结果表明,LPS和ATP刺激后的细胞死亡不仅限于焦亡,还可以发生凋亡和坏死性细胞凋亡,有助于研究人员更好地了解LPS和ATP刺激后的细胞死亡,并选择更好的实验方法。

Introduction

细胞死亡是所有生物体的基本生理过程。近年来,大量研究表明,细胞死亡与生物体内的免疫和平衡有关。研究细胞死亡有助于我们更好地了解疾病的发生和发展。已经描述了几种形式的程序性细胞死亡,并且已经确定了这些过程中的一些关键靶点。焦亡、凋亡和坏死性凋亡是参与内部平衡和疾病1 的三种遗传定义的程序性细胞死亡途径。

细胞焦亡的特征是膜孔的形成和细胞内容物的释放。活化的半胱天冬酶或颗粒酶裂解 gasdermins 以分离其 N 端结构域,然后这些结构域寡聚化,与膜结合并形成孔 2,3,4。Gasdermin 孔提供跨细胞膜的非典型分泌通道,导致下游细胞反应,包括内容物释放和离子流入 2,3,4。最终,细胞最终经历质膜破裂和由 ninjurin-15 促进的焦亡裂解。在凋亡中,活化的 Bax 和 Bak 在线粒体外膜上形成寡聚体并释放细胞色素 C,细胞色素 C 受 BCL-2 家族的促凋亡和抗凋亡蛋白、起始蛋白半胱天冬酶(caspase-8、-9 和 -10)和效应半胱天冬酶(caspase-3、-6 和 –7)之间的平衡调节1,6,7.细胞凋亡的形态变化包括膜起泡、细胞收缩、核碎裂、染色质凝聚和凋亡体形成6,8。受体相互作用的丝氨酸/苏氨酸蛋白激酶 1 (RIPK3) 和混合谱系激酶结构域样 (MLKL) 是坏死性凋亡机制1 的两个下游核心成分。RIPK3 募集并磷酸化 MLKL,p-MLKL 寡聚化,与细胞膜结合,引发膜穿孔,引起离子流入,增加细胞内渗透压,最终导致细胞破裂 6,9。Gasdermins 和 MLKL 与质膜结合并分别介导焦亡和坏死性凋亡,而 BAX/BAK 通过与线粒体6 的外膜结合介导细胞凋亡。

尽管每种途径都有特定的机制和结果,但它们会导致细胞膜上的类似变化。在正常情况下,磷脂酰丝氨酸(PS)仅局限于质膜的内小叶中。然而,在细胞焦亡、凋亡和坏死性凋亡的早期阶段,PS会暴露在质膜外。Caspase-3/caspase-7 激活 TMEM16 和 XKR 家族,导致细胞膜不对称并在凋亡过程中使 PS 外化10。Gasdermin D 介导和 MLKL 介导的 Ca2+ 内流导致细胞膜上磷脂双层对称性丧失和 PS 暴露。暴露发生在细胞膜完整性丧失之前11,12。基于这三种类型的程序性细胞死亡膜的相似变化,我们使用流式细胞术分析膜联蛋白 V/7-氨基放线菌素 D (7-AAD) 双重染色以检测细胞死亡。Annexin V 是一种钙依赖性磷脂结合蛋白,对 PS 具有高亲和力,可作为灵敏探针检测质膜表面暴露的 PS13。7-AAD是一种不能穿过整个细胞膜的核酸染色剂。它类似于碘化丙啶(PI),一种常用的核酸染料。它们具有相似的荧光特性,但7-AAD具有更窄的发射光谱,并且对其他检测通道的干扰较小。由于这些相似性,区分焦亡、细胞凋亡和坏死性凋亡是不够的。我们使用流式细胞术来检测全细胞的细胞死亡。第二种方法用于使用扫描电子显微镜(SEM)捕获细胞膜,以观察单个细胞中细胞死亡的可能形式。

我们建立了脂多糖(LPS)和三磷酸腺苷(ATP)诱导的佛波醇-12-肉豆蔻酸酯-13-乙酸酯(PMA)分化的人单核细胞(THP-1)巨噬细胞脂质沉积模型来观察细胞死亡。该协议侧重于观察细胞死亡,而不是研究机制。

Protocol

1. 细胞系和细胞培养 在含有 10% 胎牛血清、1% 青霉素 – 链霉素和 0.05 mM β-巯基乙醇的 RPMI-1640 完全培养基中培养人单核细胞系 THP-1。在37°C的5%CO2 湿润空气中培养细胞。每 2-3 天传代培养一次细胞。注意:THP-1 是悬浮细胞,选择更换一半的培养基进行传代培养。当在光学显微镜下观察许多细胞片段时,在室温下以300× g 离心3分钟。将细胞重悬于预热的新鲜完全?…

Representative Results

按照方案中的描述处理细胞样品,并进行流式细胞术检测。正常细胞不能用膜联蛋白V和7-AAD(膜联蛋白V-/7-AAD-)染色。在细胞焦亡、凋亡和坏死性凋亡的早期阶段,PS暴露并与Annexin V结合,但细胞膜仍然完整,从细胞外空间排除了7-AAD(Annexin V+/7-AAD-)。在后期阶段,细胞膜失去完整性,细胞同时被膜联蛋白V和7-AAD染色,显示出双重阳性结果(膜联蛋白V+/7-AAD+)。坏死细胞仅用7-AAD(Annexin V-/7-AAD+)…

Discussion

在本文中,使用两种方法检测 LPS 和 ATP 诱导的 PMA 分化 THP-1 巨噬细胞的死亡。采用膜联蛋白V/7-AAD双染色,采用流式细胞术分析整体染色结果。与其他流式细胞术分析一样,设置一组未染色细胞和两组单染色细胞以排除假阳性和假阴性结果。结果表明,LPS/ATP刺激后,几种细胞失去了膜的完整性,表明可能已经发生了细胞死亡。这种检测方法使我们能够评估整个细胞的细胞死亡。值得注意的是,Anne…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

我们非常感谢成都中医药大学创新中药学研究所的孙佳怡和杨陆在流式细胞术方面的帮助,以及西南中医资源国家重点实验室的陈翠萍在扫描电子显微镜方面的帮助。这项工作得到了国家自然科学基金[82104491]、四川省自然科学基金[2023NSFSC0674]和中国博士后科学基金[2021M693789]的支持。

Materials

0.25% pancreatic enzyme solution (excluding EDTA) BOSTER Biological Technology co.ltd PYG0068
5 mL Polystyrene Round-Bottom Tube CORNING 352235
5 mL centrifuge tube Labgic Technology Co., Ltd.  BS-50-M
6-well plate  Sorfa Life Science Research Co.,Ltd 220100
Annexin V-PE/7-AAD apoptosis analysis kit Absin (Shanghai) Biological Technology co.ltd abs50007 Annexin V-PE, 7-AAD, 5×Binding buffer, Apoptosis Positive Control Solution
celculture CO2 incubator Esco (Shanghai) Enterprise Development Co., Ltd. N/A
cell culture dish, 100 mm Sorfa Life Science Research Co.,Ltd 230301
Cellometer K2 Fluorescent Cell Counter Nexcelom Bioscience LLC Cellometer K2
Cellometer SD100 Counting Chambers Nexcelom Bioscience LLC CHT4-SD100-002
centrifuge machine Hunan Xiangyi Laboratory Instrument Development Co., Ltd L530
chromium alum  Guangdong Wengjiang Chemical Reagent Co., Ltd. PA04354
cover glasses, 9 mm Labgic Technology Co., Ltd.  BS-09-RC
critical point dryer Quorum Technologies K850
dimethyl sulfoxide BOSTER Biological Technology co.ltd PYG0040
electron microscope fixative Servicebio Technology co.ltd  G1102 2.5% glutaric dialdehyde, 100 mM phosphorous salts
electronic balance SHIMADZU ATX124
ethanol absolute Chengdu Kelong Chemical Co., Ltd 2021033102
flow cytometer Becton,Dickinson and Company FACSCanto Equation 1
flow cytometry analysis software Becton,Dickinson and Company BD FACSDivaTM Software
gelatin Guangdong Wengjiang Chemical Reagent Co., Ltd. PA00256 
High resolution cold field emission scanning electron microscope TITACHI Regulus 8100
human monocytic cell line THP-1 Procell Life Science&Technology Co.,Ltd. CL0233
inverted microscope  Leica Microsystems Co., Ltd DMi1
IR Vortex Mixer VELP Scientifica Srl ZX4
lipopolysaccharide  Beijing Solarbio Science & Technology Co.,Ltd.  L8880 LPS is derived from Escherichia coli 055:B5
Na2ATP Beijing Solarbio Science & Technology Co.,Ltd.  A8270
phorbol-12-myristate-13-acetate  Beijing Solarbio Science & Technology Co.,Ltd.  P6741
phosphate-buffered saline Servicebio Technology co.ltd  G4202
Pipette Eppendorf AG N/A
pipette tips, 10 μL Servicebio Technology co.ltd  T-10PL
pipette tips, 1 mL  Servicebio Technology co.ltd  T-1250L
pipette tips, 200 μL Servicebio Technology co.ltd  T-200L
RPMI-1640 complete culture media Procell Life Science&Technology Co.,Ltd. CM0233 RPMI-1640 + 10% FBS + 0.05mM β-mercaptoethanol + 1% P/S
RPMI-1640 culture media  Shanghai BasalMedia Technologies Co., LTD. K211104
sheath fluid BECKMAN COULTER 8546733
sputter coater Cressington Scientific Instruments Ltd 108
thermostatic water bath GUOHUA Electric Appliance CO.,Ltd  HH-1

Referencias

  1. Bertheloot, D., Latz, E., Franklin, B. S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 18 (5), 1106-1121 (2021).
  2. Rao, Z., et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 12 (9), 4310-4329 (2022).
  3. Huston, H. C., Anderson, M. J., Fink, S. L. Pyroptosis and the cellular consequences of gasdermin pores. Semin Immunol. 69, 101803 (2023).
  4. Kovacs, S. B., Miao, E. A. Gasdermins: Effectors of pyroptosis. Trend Cell Biol. 27 (9), 673-684 (2017).
  5. Kayagaki, N., et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature. 591 (7848), 131-136 (2021).
  6. Ketelut-Carneiro, N., Fitzgerald, K. A. Apoptosis, pyroptosis, and necroptosis-Oh my! The many ways a cell can die. J Mol Biol. 434 (4), 167378 (2022).
  7. Kakarla, R., Hur, J., Kim, Y. J., Kim, J., Chwae, Y. J. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med. 52 (1), 1-6 (2020).
  8. Imre, G. Cell death signalling in virus infection. Cell Signal. 76, 109772 (2020).
  9. Zhan, C., Huang, M., Yang, X., Hou, J. MLKL: Functions beyond serving as the Executioner of Necroptosis. Theranostics. 11 (10), 4759-4769 (2021).
  10. Lemke, G. How macrophages deal with death. Nat Rev Immunol. 19 (9), 539-549 (2019).
  11. Yang, X., et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity. 51 (6), 983-996 (2019).
  12. Gong, Y. N., et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell. 169 (2), 286-300 (2017).
  13. Dong, H. P., et al. Evaluation of cell surface expression of phosphatidylserine in ovarian carcinoma effusions using the annexin-V/7-AAD assay: clinical relevance and comparison with other apoptosis parameters. Am J Clin Pathol. 132 (5), 756-762 (2009).
  14. JoVE, Scanning Electron Microscopy (SEM), JoVE Science Education Database, Analytical Chemistry. JoVE. , (2024).
  15. Chen, X., et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26 (9), 1007-1020 (2016).
  16. Herr, D. R., et al. Ultrastructural characteristics of DHA-induced pyroptosis. Neuromol Med. 22 (2), 293-303 (2020).
  17. Xie, Q., et al. Lipopolysaccharide/adenosine triphosphate induces IL-1β and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells. Int Mol Med. 34 (1), 341-349 (2014).
  18. Gurung, P., et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 192 (4), 1835-1846 (2014).
  19. Liu, W., et al. Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo. J Neuroinflam. 15 (1), 48 (2018).
  20. Wang, S. H., et al. GSK-3β-mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts. Euro J Pharmacol. 920, 174830 (2022).
  21. Chen, J., et al. RIP3 dependent NLRP3 inflammasome activation is implicated in acute lung injury in mice. J Transl Med. 16 (1), 233 (2018).
  22. Rogers, C., et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Comm. 10 (1), 1689 (2019).
  23. Wang, Y., et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547 (7661), 99-103 (2017).
  24. Kang, S., et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Comm. 6, 7515 (2015).
  25. Wang, Y., Kanneganti, T. D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Str Biotechnol J. 19, 4641-4657 (2021).
  26. Hou, Y., et al. Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction. Phytomedicine. 128, 155529 (2024).
  27. Shuwen, H., et al. Cholesterol induction in CD8+ T cell exhaustion in colorectal cancer via the regulation of endoplasmic reticulum-mitochondria contact sites. Cancer Immunol Immunother. 72 (12), 4441-4456 (2023).
  28. Luo, X., et al. Cyclophosphamide induced intestinal injury is alleviated by blocking the TLR9/caspase3/GSDME mediated intestinal epithelium pyroptosis. Int Immunopharmacol. 119, 110244 (2023).

Play Video

Citar este artículo
Wang, H., Lan, Y., Chen, C., Yang, L., Sun, J., Zeng, Y., Wu, J. LPS and ATP-induced Death of PMA-differentiated THP-1 Macrophages and its Validation. J. Vis. Exp. (207), e66831, doi:10.3791/66831 (2024).

View Video