Summary

कार्डियक जोखिम के संकेतक के ईसीजी, मूल्यांकन, और चूहे में Aconitine प्रेरित arrhythmias संवेदनशीलता के लिए तरीके स्टेटस एपीलेप्टीकस के बाद

Published: April 05, 2011
doi:

Summary

Electrocardiogram (ईसीजी) द्वारा दिल की विद्युत गतिविधि की माप, और कार्डियक जोखिम कारकों चूहे में स्थिति एपीलेप्टीकस (एसई) के बाद और arrhythmias के लिए संवेदनशीलता का विश्लेषण के लिए तकनीक में वर्णित हैं.

Abstract

Lethal cardiac arrhythmias contribute to mortality in a number of pathological conditions. Several parameters obtained from a non-invasive, easily obtained electrocardiogram (ECG) are established, well-validated prognostic indicators of cardiac risk in patients suffering from a number of cardiomyopathies. Increased heart rate, decreased heart rate variability (HRV), and increased duration and variability of cardiac ventricular electrical activity (QT interval) are all indicative of enhanced cardiac risk 1-4. In animal models, it is valuable to compare these ECG-derived variables and susceptibility to experimentally induced arrhythmias. Intravenous infusion of the arrhythmogenic agent aconitine has been widely used to evaluate susceptibility to arrhythmias in a range of experimental conditions, including animal models of depression 5 and hypertension 6, following exercise 7 and exposure to air pollutants 8, as well as determination of the antiarrhythmic efficacy of pharmacological agents 9,10.

It should be noted that QT dispersion in humans is a measure of QT interval variation across the full set of leads from a standard 12-lead ECG. Consequently, the measure of QT dispersion from the 2-lead ECG in the rat described in this protocol is different than that calculated from human ECG records. This represents a limitation in the translation of the data obtained from rodents to human clinical medicine.

Status epilepticus (SE) is a single seizure or series of continuously recurring seizures lasting more than 30 min 11,12 11,12, and results in mortality in 20% of cases 13. Many individuals survive the SE, but die within 30 days 14,15. The mechanism(s) of this delayed mortality is not fully understood. It has been suggested that lethal ventricular arrhythmias contribute to many of these deaths 14-17. In addition to SE, patients experiencing spontaneously recurring seizures, i.e. epilepsy, are at risk of premature sudden and unexpected death associated with epilepsy (SUDEP) 18. As with SE, the precise mechanisms mediating SUDEP are not known. It has been proposed that ventricular abnormalities and resulting arrhythmias make a significant contribution 18-22.

To investigate the mechanisms of seizure-related cardiac death, and the efficacy of cardioprotective therapies, it is necessary to obtain both ECG-derived indicators of risk and evaluate susceptibility to cardiac arrhythmias in animal models of seizure disorders 23-25. Here we describe methods for implanting ECG electrodes in the Sprague-Dawley laboratory rat (Rattus norvegicus), following SE, collection and analysis of ECG recordings, and induction of arrhythmias during iv infusion of aconitine.

These procedures can be used to directly determine the relationships between ECG-derived measures of cardiac electrical activity and susceptibility to ventricular arrhythmias in rat models of seizure disorders, or any pathology associated with increased risk of sudden cardiac death.

Protocol

<p class="jove_title"> 1. निर्माण सामग्री</p><ol><li> एक कंठ नस कैथेटर पीई 50-पॉलीथीन टयूबिंग की एक टुकड़ा (100 मिमी), एक अंत में beveled से निर्माण किया है, और फिर हेपरिन खारा (50 यू हेपरिन एमएल / खारा) के साथ भरा.</li><li> ईसीजी रिकॉर्डिंग इलेक्ट?…

Discussion

वर्णित प्रक्रियाओं के दो पहलुओं के महत्वपूर्ण महत्व के हैं. सबसे पहले, aconitine प्रशासन के दिल दर जानवरों भर में बराबर होना चाहिए. इस गले का शिरा कैथेटर दिल के सापेक्ष सुझाव के अनुरूप स्थान, और जलसेक दर से सा?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

इस शोध मिर्गी (इलाज) में SLB अनुसंधान के लिए नागरिक संयुक्त से एक अनुदान द्वारा समर्थित किया गया.

References

  1. Chugh, S. S. Determinants of prolonged QT interval and their contribution to sudden death risk in coronary artery disease: The Oregon sudden unexpected death study. Circulation. 119, 663-670 (2009).
  2. Darbar, D. Sensitivity and specificity of QTc dispersion for identification of risk of cardiac death in patients with peripheral vascular disease. BMJ. 312, 874-878 (1996).
  3. Bruyne, M. C. d. e. QTc dispersion predicts cardiac mortality in the elderly: The Rotterdam study. Circulation. 97, 467-472 (1998).
  4. Malik, M. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 93, 1043-1065 (1996).
  5. Grippo, A. J. Increased susceptibility to ventricular arrhythmias in a rodent model of experimental depression. Am. J. Physiol. 286, H619-H626 (2004).
  6. Li, M., Wang, J., Xie, H. H., Shen, F. M., Su, D. F. The susceptibility of ventricular arrhythmia to aconitine in conscious hypertensive rats. Acta. 28, 211-215 (2007).
  7. Beig, M. I. Voluntary exercise does not affect stress-induced tachycardia, but improves resistance to cardiac arrhythmias in rats. Clin. Exp. Pharm. Physiol. , (2010).
  8. Hazari, M. S., Haykai-Coates, N., Winsett, D. W., Costa, D. L., Farraj, A. K. A single exposure to particulate or gaseous ari pollution increases the risk of aconitine-induced cardiac arrhythmia in hypertensive rats. Toxicol. Sci. 112, 532-542 (2009).
  9. Amran, M. S., Hashimoto, K., Homma, N. Effects of sodium-calcium exchange inhibitors, KB-R7943 and SEA0400, on aconitine-induced arrhythmias in guinea pigs in vivo, in vitro, and in computer simulation studies. J. Pharmacol. Exp. Ther. 310, 83-89 (2004).
  10. Klekot, A. A. Antiarrhythmic activity of a membrane-protecting agent Sal’magin in rats with aconitine-induced arrhythmias. Bull. Exp. Biol. Med. 142, 209-211 (2006).
  11. Lowenstein, D. H., Alldredge, B. K. Status Epilepticus. New England J. Med. 338, 970-976 (1998).
  12. Walker, M. Status epilepticus: an evidence based guide. BMJ. 331, 673-677 (2005).
  13. Shorvon, S. . Status epilepticus: its clinical features and treatment in children and adults. , (1994).
  14. Boggs, J. G. Hemodynamic monitoring prior to and at the time of death in status epilepticus. Epilepsy Res. 31, 199-209 (1998).
  15. Walton, N. Y. Systemic effects of generalized convulsive status epilepticus. Epilepsia. 34, S54-S58 (1993).
  16. Boggs, J. G., Painter, J. A., DeLorenzo, R. J. Analysis of electrocardiographic changes in status epilepticus. Epilepsy Res. 14, 87-94 (1993).
  17. Painter, J. A., Shiel, F. O., DeLorenzo, R. J. Cardiac pathology findings in status epilepticus. Epilepsia. 34, 30-30 (1993).
  18. Lathers, C. M., Schraeder, P. L. Clinical pharmacology: drugs as a benefit and/or risk in sudden unexpected death in epilepsy. J. Clin. Pharmacol. 42, 123-126 (2002).
  19. Dashieff, R. M. Sudden unexpected death in epilepsy: a series from an epilepsy surgery program and specualtion of the relationship to sudden cardiac death. J. Clin. Neurophysiol. 8, 216-222 (1991).
  20. Tigaran, P. -. C. o. d. r. e. a., Dalager-Pedersen, S., Baandrup, S., Dam, U., M, ., Vesterby-Charles, A. Sudden unexpected death in epilepsy: is death by seizures a cardiac event. Am. J. Forensic Med. Pathol. 26, 99-105 (2005).
  21. Leung, H., Kwan, P., Elger, C. E. Finding the missing link between ictal bradyarrhythmia, ictal asystole, and sudden unexpected death in epilepsy. Epilepsy and Behavior. 9, 19-30 (2006).
  22. Nei, M. EEG and ECG in sudden unexplained death in epilepsy. Epilepsia. 45, 338-345 (2004).
  23. Dudek, F. E., Clark, S., Williams, P. A., Grabenstatter, H. L., Pitkanen, A., Schwartzkroin, P. A., Moshe, S. L. . Models of Seizures and Epilepsy. , 415-432 (2006).
  24. Turski, W. A. Limbic seizures produced by pilocarpine in rats: behavioral electroencephalographic, and neuropathological study. Behav. Brain Res. 9, 315-335 (1989).
  25. Kulkarni, S. K., George, B. Lithium-pilocarpine neurotoxicity: a potential model of status epilepticus. Methods Find. Exp. Clin. Pharamacol. 17, 551-567 (1995).
  26. Stein, P. K., Bosner, M. S., Kleiger, R. E., Conger, B. M. Hart rate variability: a measure of cardiac autonomic tone. Am. Heart J. 127, 1376-1381 (1994).
  27. Metcalf, C. S., Poelzing, S., Little, J. G., Bealer, S. L. Status epilepticus induces cardiac myofilament damage and increased susceptibility to arrhythmias in rat. Am. J. Physiol. 297, H2120-H2127 (2009).
check_url/fr/2726?article_type=t

Play Video

Citer Cet Article
Bealer, S. L., Metcalf, C. S., Little, J. G. Methods for ECG Evaluation of Indicators of Cardiac Risk, and Susceptibility to Aconitine-induced Arrhythmias in Rats Following Status Epilepticus. J. Vis. Exp. (50), e2726, doi:10.3791/2726 (2011).

View Video