Summary

机械刺激引起的钙波传播的细胞单层:牛角膜内皮细胞的例子

Published: July 16, 2013
doi:

Summary

细胞间钙<sup> +</sup>波驱动的间隙连接通道和半管。在这里,我们描述了一种方法来测量细胞间钙<sup> +</sup>波在细胞模型在响应到本地单细胞的机械刺激和调查中的应用性能和调节间隙连接通道和半管。

Abstract

间的沟通是必不可少的各种器官和组织,包括大脑,肝脏,视网膜,耳蜗血管细胞之间的生理过程的协调。在实验设置中,细胞间的Ca 2 +波可以引起的施加机械刺激的单个单元格。这会导致细胞内信号分子IP 3与Ca 2 +的释放,启 ​​动同心的机械刺激细胞的Ca 2 +波传播到邻近细胞。的主要分子间的Ca 2 +波传播途径,控制是通过直接传输IP 3和半管通过ATP释放的间隙连接通道。鉴定和表征的属性和调节不同连接蛋白和pannexin的亚型,间隙连接通道和半管所允许的quantification的胞间的Ca 2 +波,小干扰RNA,和间隙连接通道和半管抑制剂的使用的蔓延。在这里,我们描述的方法来衡量间的Ca 2 +波原发性角膜内皮细胞的单层Fluo4-AM加载响应的控制和局部机械的刺激引起的一种急性,短暂变形的细胞,结果接触,用显微操纵器控制与齿顶圆直径小于1微米的玻璃微细胞膜。我们还描述了初级牛角膜内皮细胞和其用作模型系统评估Cx43的hemichannel活性间的Ca 2 +波通过释放的ATP作为驱动力的隔离。最后,我们讨论的使用,优点,局限性和替代品的差距结的通道和hemichannel研究的背景下,这种方法。

Introduction

间的通信和信号是必不可少的响应外兴奋剂组织和整个器官水平1,2协调的生理过程。间沟通的最直接的方法是创建发生间隙路口。缝隙连接的间隙连接通道的噬菌斑,这是蛋白质形成的通道由两个间隙连接蛋白(Cx的)相邻小区的半管3,4( 图1)的头-头对接。缝隙连接的允许通过的小的信号分子,其分子量小于1.5 kDa的,包括的Ca 2 +或IP 3 5,引起和调制的Ca 2 +释放的相邻小区6( 图2)从细胞内储存。间隙连接通道内和分子间的蛋白质相互作用,细胞信号传导过程,如氧化还原修改和严格的监管磷酸化7。 GJS促进细胞连接的协调反应,从而作为一种化学和电气合胞体。例如,基于Cx的GJ通道85是介导的跨心房和心室肌细胞的心肌动作电位的传播。 Cxs的不仅有间隙连接通道的作用,而且还形成未配对的半管,从而作为膜通道的常规离子通道8-10( 图1)类似。半管参与相邻细胞之间的旁分泌信号,通过控制离子交换和信号分子之间的内和细胞外的环境。

在许多类型的细胞(如上皮细胞,成骨细胞,星形胶质细胞,血管内皮细胞 )和器官(如脑,肝,视网膜,耳蜗和脉管系统)中,细胞间的Ca 2 +的波的基本协调多细胞反应的<su对> 11。在细胞内Ca 2 +的水平,在目标细胞中增加并不限于此细胞,而是传播到周边的相邻小区,从而建立的胞内Ca 2 +的12,13。这些胞内Ca 2 +的波是重要的,正常的生理调节的细胞层为合胞体和它们的调节异常已与病理生理过程11。角膜内皮细胞和上皮细胞,研究不同的群体,包括我们自己的25-33,14-24间通讯的机制和作用。在非兴奋细胞,角膜内皮细胞一样,会发生两种不同的模式间的沟通28,29,即细胞间隙连接通讯和旁分泌细胞间的沟通。细胞间隙连接通讯涉及直接交换的信号分子通过间隙连接7。峡JUNC的为维持组织的动态平衡,控制细胞的增殖,并建立同步响应外应力10,34,35,周志武间的沟通非常重要。一些病症,间隙连接耦合减少因缺陷CXS,,并特此影响细胞间隙连接通讯36。这强调在多细胞生物中细胞间隙连接通讯的重要性和影响力。间隙连接通讯相比,旁分泌细胞间的通信是不依赖于细胞与细胞间的同位语,因为它涉及的释放扩散外的使者( 图2)。不同类型的信号分子在细胞外空间的信号细胞释放的。的分子被运送到目标小区,如果检测到特定的受体蛋白质。随后受体信号复合物诱导细胞反应,被终止的信号,失活或脱敏除去。发布亲脂性细胞外信号的使者渗透膜,并作用于细胞内的受体。与此相反,亲水性信使不交叉响应细胞质膜的,但作为表面表达的受体蛋白质,然后中继信号到细胞内环境结合的配位体。三个主要家族的细胞表面受体蛋白参与这个过程:离子通道相连,酶联,G蛋白挂钩。释放的信使分子相同的细胞受体的自分泌,可作用于靶细胞上在靠近(旁分泌),或在远距离的靶细胞需要的循环系统(内分泌)。

在许多类型的细胞,包括角膜内皮细胞28,29,ATP是主要的亲水性的,该驱动器的传播间的Ca 2 +37-40的旁分泌因子之一。期间通过各种代理的机械变形,缺氧,炎症或刺激,ATP可以释放健康的细胞41-44剪切应力,拉伸,或渗透压肿胀44,45的响应。已经假定,包括囊泡胞吐的运输机制,如ATP结合盒(ABC)转运,质膜电压依赖性阴离子通道46,P2X7受体通道47,48,以及44和大量不同的ATP释放机制 连接蛋白49-52和pannexin半管半管43,49,53。外ATP可迅速水解为ADP,AMP和腺苷54,55由ectonucleotidases是存在于细胞外的环境中。细胞释放ATP及其代谢产物ADP 56将通过扩散蔓延。随后的这些核苷酸与在相邻小区中的嘌呤能受体的相互作用已被牵连在propagation间的Ca 2 +28,37,51。存在两个不同的类,嘌呤能受体:腺苷P1-嘌呤受体的天然配体是主要的,而嘌呤(ATP,ADP)和嘧啶核苷酸(UTP,UDP)作用于P2-嘌呤受体57。

间的通信可以通过不同的方法,如刮加载,染料转移,本地的uncaging受体激动剂如IP 3和Ca 2 +的,机械性刺激进行调查。这里,我们描述的研究的Ca 2 +波传播引起的机械性刺激的单个单元格。研究Ca 2 +的波传播的机械刺激的优点是,它提供了一个简单的工具,以量化的Ca 2 +波的传播,随着时间的推移,它允许定量比较不同预处理细胞。在角膜内皮细胞中,这些胞内Ca 2 +的波允许的共的单层的协调响应,在此作为一个可能的防御机制帮助承受外应力,在眼内手术中的血管内皮细胞的非再生的角膜内皮细胞,或在曝光时的免疫排斥反应过程中的炎症介质或葡萄膜炎58,59。

Protocol

1。角膜内皮细胞的分离在开始之前:隔离新鲜的眼睛,从本地屠宰场,尽快去核后,眼睛的细胞。确保眼球被摘除一个很牛的最大18个月,五分钟验尸和保存在厄尔的平衡盐溶液 – 1%碘溶液在4°C运输到实验室。 走眼厄尔的平衡盐溶液 – 1%碘溶液,并将其放置在培养皿(100 x 20毫米)。 眼用溶液中含有70%乙醇消毒,冲洗Earle氏平衡盐溶液含有1%的碘。 <l…

Representative Results

执行所有的实验都符合所有有关准则,法规和监管机构的协议被证明是鲁汶的动物护理和使用委员会的指导和批准下进行。 牛角膜内皮细胞(BCEC),表达和功能的间隙连接两种细胞间隙连接通讯和旁分泌细胞间通信间的沟通互动的方式作出显著贡献,但已被证明的主要途径是旁分泌细胞间的通信通路介导的通过ATP释放Cx43的半管28,29。 ATP和ADP是由ectonucleotidase电子NTPD1?…

Discussion

在这篇稿件中,我们描述了一个简单的方法来衡量初级牛角膜内皮细胞的单层细胞间的Ca 2 +波传播提供本地化和控制的机械性刺激,使用微量。机械刺激的细胞响应与局部增加细胞内的IP 3与Ca 2 +,这两者都是必不可少的细胞内信号分子,该驱动器间的Ca 2 +波传播11,67。 IP 3直接传送给通过间隙连接通道5的相邻小区,而Ca 2 +的…

Divulgations

The authors have nothing to disclose.

Acknowledgements

在实验室中进行的研究工作,研究基金会赠款支持 – 佛兰德(FWO授权号码G.0545.08和G.0298.11),校际景点波兰人计划(比利时科学政策;授权号P6/28和P7/13)和嵌入式在FWO支持的研究界。鼎晖是一个博士后研究基金会 – 佛拉芒(FWO),的。作者非常感谢所有现任和前任成员实验室的分子和细胞信号(鲁汶),的SP SRINIVAS博士(印第安纳大学眼科视光学院,美国),实验室博士Leybaert(根特大学)和博士Vinken(VUB)提供了有益的讨论,优化程序或参与开发工具的研究连接蛋白半管。

Materials

Name of Reagent/Material Company Catalog Number Column1
Earle’s Balanced Salt Solution (EBSS) Invitrogen-Gibco-Molecular Probes (Karlsruhe, Germany) 14155-048
Iodine Sigma-Aldrich (Deisenhofen, Germany) 38060-1EA
Dulbecco’s Modified Eagle’s Medium (DMEM) Invitrogen-Gibco-Molecular Probes (Karlsruhe, Germany) 11960-044
L-glutamine (Glutamax) Invitrogen-Gibco-Molecular Probes (Karlsruhe, Germany) 35050-038
Amphotericin-B Sigma-Aldrich (Deisenhofen, Germany) A2942
Antibiotic-antimycotic mixture Invitrogen-Gibco-Molecular Probes (Karlsruhe, Germany) 15240-096
Trypsin Invitrogen-Gibco-Molecular Probes (Karlsruhe, Germany) 25300-054
Dulbecco’s PBS Invitrogen-Gibco-Molecular Probes (Karlsruhe, Germany) 14190-091
Fluo-4 AM Invitrogen-Gibco-Molecular Probes (Karlsruhe, Germany) F14217
ARL-67156 (6-N,N-Diethyl-b,g-dibromomethylene-D-ATP) Sigma-Aldrich (Deisenhofen, Germany) A265
Apyrase VI Sigma-Aldrich (Deisenhofen, Germany) A6410
Apyrase VII Sigma-Aldrich (Deisenhofen, Germany) A6535
Gap26 (VCYDKSFPISHVR) Custom peptide synthesis
Gap27 (SRPTEKTIFII) Custom peptide synthesis
Control Peptide (SRGGEKNVFIV) Custom peptide synthesis
siRNA1 Cx43 (sense: 5’GAAGGAGGAGGAACU-CAAAdTdT) Annealed siRNA was purchased at Eurogentec (Luik, Belgium)
siRNA2 Cx43 (sense: 5’CAAUUCUUCCUGCCGCAAUdTdT) Annealed siRNA was purchased at Eurogentec (Luik, Belgium)
siRNA scramble: scrambled sequence of siCx43-1 (sense: 5’GGUAAACG-GAACGAGAAGAdTdT) Annealed siRNA was purchased at Eurogentec (Luik, Belgium)
TAT-L2 (TAT- DGANVDMHLKQIEIKKFKYGIEEHGK) Thermo Electron (Ulm, Germany)
TAT-L2-H126K/I130N (TAT-DGANVDMKLKQNEIKKFKYGIEEHGK) Thermo Electron (Ulm, Germany)
Two chambered glass slides Laboratory-Tek Nunc (Roskilde, Denmark) 155380
Confocal microscope Carl Zeiss Meditec (Jena, Germany) LSM510
Piezoelectric crystal nanopositioner (Piezo Flexure NanoPositioner) PI Polytech (Karlsruhe, Germany) P-280
HVPZT-amplifier PI Polytech (Karlsruhe, Germany) E463 HVPZT-amplifier
Glass tubes (glass replacement 3.5 nanoliter) World Precision Instruments, Inc. Sarasota, Florida, USA 4878
Microelectrode puller Zeitz Instrumente (Munchen, Germany) WZ DMZ-Universal Puller

References

  1. Vinken, M., et al. Connexins and their channels in cell growth and cell death. Cell Signal. 18, 592-600 (2006).
  2. Mese, G., Richard, G., White, T. W. Gap junctions: basic structure and function. J. Invest. Dermatol. 127, 2516-2524 (2007).
  3. Bruzzone, R., White, T. W., Paul, D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur. J. Biochem. 238, 1-27 (1996).
  4. White, T. W., Bruzzone, R., Paul, D. L. The connexin family of intercellular channel forming proteins. Kidney Int. 48, 1148-1157 (1995).
  5. Decrock, E., et al. Connexin-related signaling in cell death: to live or let die?. Cell Death Differ. 16, 524-536 (2009).
  6. Herve, J. C. Gap junctional complexes: from partners to functions. Prog. Biophys. Mol. Biol. 94, 1-4 (2007).
  7. Herve, J. C., Bourmeyster, N., Sarrouilhe, D., Duffy, H. S. Gap junctional complexes: from partners to functions. Prog. Biophys. Mol. Biol. 94, 29-65 (2007).
  8. Bruzzone, R., Barbe, M. T., Jakob, N. J., Monyer, H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J. Neurochem. 92, 1033-1043 (2005).
  9. Ebihara, L., Steiner, E. Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J. Gen. Physiol. 102, 59-74 (1993).
  10. Evans, W. H., De Vuyst, E., Leybaert, L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem. J. 397, 1-14 (2006).
  11. Leybaert, L., Sanderson, M. J. Intercellular Ca2+ waves: mechanisms and function. Physiol. Rev. 92, 1359-1392 (2012).
  12. Sanderson, M. J., Charles, A. C., Dirksen, E. R. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul. 1, 585-596 (1990).
  13. Himpens, B., Stalmans, P., Gomez, P., Malfait, M., Vereecke, J. Intra- and intercellular Ca2+ signaling in retinal pigment epithelial cells during mechanical stimulation. Faseb J. 13, 63-68 (1999).
  14. Williams, K. K., Watsky, M. A. Bicarbonate promotes dye coupling in the epithelium and endothelium of the rabbit cornea. Curr. Eye Res. 28, 109-120 (2004).
  15. Hernandez Galindo, E. E., Theiss, C., Steuhl, K. P., Meller, D. Gap junctional communication in microinjected human limbal and peripheral corneal epithelial cells cultured on intact amniotic membrane. Exp Eye Res. 76, 303-314 (2003).
  16. Williams, K., Watsky, M. Gap junctional communication in the human corneal endothelium and epithelium. Curr. Eye Res. 25, 29-36 (2002).
  17. Anderson, S. C., Stone, C., Tkach, L., SundarRaj, N. Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest. Ophthalmol. Vis. Sci. 43, 978-986 (2002).
  18. Joyce, N. C., Harris, D. L., Zieske, J. D. Mitotic inhibition of corneal endothelium in neonatal rats. Invest. Ophthalmol. Vis. Sci. 39, 2572-2583 (1998).
  19. Klepeis, V. E., Weinger, I., Kaczmarek, E., Trinkaus-Randall, V. P2Y receptors play a critical role in epithelial cell communication and migration. J. Cell Biochem. 93, 1115-1133 (2004).
  20. Klepeis, V. E., Cornell-Bell, A., Trinkaus-Randall, V. Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells. J. Cell Sci. 114, 4185-4195 (2001).
  21. Laux-Fenton, W. T., Donaldson, P. J., Kistler, J., Green, C. R. Connexin expression patterns in the rat cornea: molecular evidence for communication compartments. Cornea. 22, 457-464 (2003).
  22. Rae, J. L., Lewno, A. W., Cooper, K., Gates, P. Dye and electrical coupling between cells of the rabbit corneal endothelium. Curr. Eye Res. 8, 859-869 (1989).
  23. Watsky, M. A., Rae, J. L. Dye coupling in the corneal endothelium: effects of ouabain and extracellular calcium removal. Cell Tissue Res. 269, 57-63 (1992).
  24. Williams, K. K., Watsky, M. A. Dye spread through gap junctions in the corneal epithelium of the rabbit. Curr. Eye Res. 16, 445-452 (1997).
  25. D’hondt, C., Ponsaerts, R., Srinivas, S. P., Vereecke, J., Himpens, B. Thrombin inhibits intercellular calcium wave propagation in corneal endothelial cells by modulation of hemichannels and gap junctions. Invest. Ophthalmol. Vis. Sci. 48, 120-133 (2007).
  26. D’hondt, C., Ponsaerts, R., Srinivas, S. P., Vereecke, J., Himpens, B. Reduced intercellular communication and altered morphology of bovine corneal endothelial cells with prolonged time in cell culture. Curr. Eye Res. 34, 454-465 (2009).
  27. D’hondt, C., Srinivas, S. P., Vereecke, J., Himpens, B. Adenosine Opposes Thrombin-Induced Inhibition of Intercellular Calcium Wave in Corneal Endothelial Cells. Invest Ophthalmol. Vis. Sci. 48, 1518-1527 (2007).
  28. Gomes, P., Srinivas, S. P., Van Driessche, W., Vereecke, J., Himpens, B. ATP release through connexin hemichannels in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 46, 1208-1218 (2005).
  29. Gomes, P., Srinivas, S. P., Vereecke, J., Himpens, B. ATP-dependent paracrine intercellular communication in cultured bovine corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 46, 104-113 (2005).
  30. Gomes, P., Srinivas, S. P., Vereecke, J., Himpens, B. Gap junctional intercellular communication in bovine corneal endothelial cells. Exp Eye Res. , (2006).
  31. Ponsaerts, R., et al. The myosin II ATPase inhibitor blebbistatin prevents thrombin-induced inhibition of intercellular calcium wave propagation in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 49, 4816-4827 (2008).
  32. Ponsaerts, R., et al. RhoA GTPase Switch Controls Cx43-Hemichannel Activity through the Contractile System. PLoS ONE. 7, e42074 (2012).
  33. Ponsaerts, R., et al. Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. Faseb J. 24, 4378-4395 (2010).
  34. Charles, A. Reaching out beyond the synapse: glial intercellular waves coordinate metabolism. Sci STKE. 2005, pe6 (2005).
  35. Laird, D. W. Life cycle of connexins in health and disease. Biochem. J. 394, 527-543 (2006).
  36. Kelsell, D. P., Dunlop, J., Hodgins, M. B. Human diseases: clues to cracking the connexin code. Trends Cell Biol. 11, 2-6 (2001).
  37. Pearson, R. A., Dale, N., Llaudet, E., Mobbs, P. ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron. 46, 731-744 (2005).
  38. Klepeis, V. E., Weinger, I., Kaczmarek, E., Randall, V. T. P2Y receptors play a critical role in epithelial cell communication and migration. J. Cell Biochem. 93, 1115-1133 (2004).
  39. Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C., Nedergaard, M. ATP-mediated glia signaling. J. Neurosci. 20, 2835-2844 (2000).
  40. Burnstock, G., Williams, M. P2 purinergic receptors: modulation of cell function and therapeutic potential. J. Pharmacol. Exp. Ther. 295, 862-869 (2000).
  41. Schwiebert, E. M., Zsembery, A. Extracellular ATP as a signaling molecule for epithelial cells. Biochim. Biophys Acta. 1615, 7-32 (2003).
  42. Lazarowski, E. R., Boucher, R. C., Harden, T. K. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol. Pharmacol. 64, 785-795 (2003).
  43. Dubyak, G. R., el-Moatassim, C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. 265, C577-C606 (1993).
  44. Blair, S. A., Kane, S. V., Clayburgh, D. R., Turner, J. R. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab. Invest. 86, 191-201 (2006).
  45. Boudreault, F., Grygorczyk, R. Cell swelling-induced ATP release and gadolinium-sensitive channels. Am. J. Physiol. Cell Physiol. 282, C219-C226 (2002).
  46. Romanov, R. A., Rogachevskaja, O. A., Khokhlov, A. A., Kolesnikov, S. S. Voltage dependence of ATP secretion in mammalian taste cells. J. Gen. Physiol. 132, 731-744 (2008).
  47. Pelegrin, P., Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. Embo J. 25, 5071-5082 (2006).
  48. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A., Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 272, 735-738 (1996).
  49. D’hondt, C., et al. Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal. 23, 305-316 (2011).
  50. Leybaert, L., et al. Connexin channels, connexin mimetic peptides and ATP release. Cell Commun. Adhes. 10, 251-257 (2003).
  51. Stout, C. E., Costantin, J. L., Naus, C. C., Charles, A. C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem. 277, 10482-10488 (2002).
  52. Verma, V., Hallett, M. B., Leybaert, L., Martin, P. E., Howard Evans, W. Perturbing plasma membrane hemichannels attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins. Eur. J. Cell Biol. , (2008).
  53. Pharmacol, B. r. J. . 147, S172-S181 (2006).
  54. Slakey, L. L., Gordon, E. L., Pearson, J. D. A comparison of ectonucleotidase activities on vascular endothelial and smooth muscle cells. Ann. N.Y. Acad. Sci. 603, 366-378 (1990).
  55. Gordon, E. L., Pearson, J. D., Slakey, L. L. The hydrolysis of extracellular adenine nucleotides by cultured endothelial cells from pig aorta. Feed-forward inhibition of adenosine production at the cell surface. J. Biol. Chem. 261, 15496-15507 (1986).
  56. Moerenhout, M., Himpens, B., Vereecke, J. Intercellular communication upon mechanical stimulation of CPAE- endothelial cells is mediated by nucleotides. Cell Calcium. 29, 125-136 (2001).
  57. Ralevic, V., Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413-492 (1998).
  58. Edelhauser, H. F. The resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea. 19, 263-273 (2000).
  59. George, A. J., Larkin, D. F. Corneal transplantation: the forgotten graft. Am. J. Transplant. 4, 678-685 (2004).
  60. Hong, S. J., Wu, K. Y., Wang, H. Z., Fong, J. C. Change of cytosolic Ca2+ mobility in cultured bovine corneal endothelial cells by endothelin-1. J. Ocul. Pharmacol. Ther. 19, 1-9 (2003).
  61. Crawford, K. M., MacCallum, D. K., Ernst, S. A. Histamine H1 receptor-mediated Ca2+ signaling in cultured bovine corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 33, 3041-3049 (1992).
  62. Crawford, K. M., MacCallum, D. K., Ernst, S. A. Agonist-induced Ca2+ mobilization in cultured bovine and human corneal endothelial cells. Curr. Eye Res. 12, 303-311 (1993).
  63. Srinivas, S. P., Yeh, J. C., Ong, A., Bonanno, J. A. Ca2+ mobilization in bovine corneal endothelial cells by P2 purinergic receptors. Curr. Eye Res. 17, 994-1004 (1998).
  64. Satpathy, M., Gallagher, P., Jin, Y., Srinivas, S. P. Extracellular ATP opposes thrombin-induced myosin light chain phosphorylation and loss of barrier integrity in corneal endothelial cells. Exp Eye Res. 81, 183-192 (2005).
  65. Srinivas, S. P., et al. Cell volume response to hyposmotic shock and elevated cAMP in bovine trabecular meshwork cells. Exp. Eye Res. 78, 15-26 (2004).
  66. D’hondt, C., Ponsaerts, R., De Smedt, H., Bultynck, G., Himpens, B. Pannexins, distant relatives of the connexin family with specific cellular functions. Bioessays. 31, 953-974 (2009).
  67. Boitano, S., Dirksen, E. R., Sanderson, M. J. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science. 258, 292-295 (1992).
  68. De Vuyst, E., et al. Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J. 25, 34-44 (2006).
  69. De Vuyst, E., et al. Ca2+ regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium. 46, 176-187 (2009).
  70. Weissman, T. A., Riquelme, P. A., Ivic, L., Flint, A. C., Kriegstein, A. R. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron. 43, 647-661 (2004).
  71. Iyer, S., Deutsch, K., Yan, X., Lin, B. Batch RNAi selector: a standalone program to predict specific siRNA candidates in batches with enhanced sensitivity. Computer Methods and Programs in Biomedicine. 85, 203-209 (2007).
  72. Stehberg, J., et al. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. Faseb J. 26, 3649-3657 (2012).
  73. Evans, W. H., Bultynck, G., Leybaert, L. Erratum to: Manipulating Connexin Communication Channels: Use of Peptidomimetics and the Translational Outputs. J. Membr. Biol. 245, 451 (2012).
  74. Majumder, P., et al. ATP-mediated cell-cell signaling in the organ of Corti: the role of connexin channels. Purinergic Signal. 6, 167-187 (2010).
  75. Carvalho, A. C., et al. affects intracellular Ca2+ stores and induces Ca2+ wave propagation. Cell Death Differ. 11, 1265-1276 (2004).
  76. Torres, A., et al. Extracellular Ca2+ acts as a mediator of communication from neurons to glia. Sci. Signal. 5, ra8 (2012).
  77. Decrock, E., et al. Transfer of IP(3) through gap junctions is critical, but not sufficient, for the spread of apoptosis. Cell Death Differ. 19 (3), 947-957 (2012).
  78. Beltramello, M., Piazza, V., Bukauskas, F. F., Pozzan, T., Mammano, F. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat. Cell Biol. 7 (1,4,5), 63-69 (2005).
  79. Bukauskas, F. F., Bukauskiene, A., Verselis, V. K. Conductance and permeability of the residual state of connexin43 gap junction channels. J. Gen. Physiol. 119, 171-186 (2002).
  80. Bukauskas, F. F., Verselis, V. K. Gap junction channel gating. Biochim. Biophys. Acta. 1662, 42-60 (2004).
  81. Dahl, G. Where are the gates in gap junction channels?. Clin. Exp. Pharmacol. Physiol. 23, 1047-1052 (1996).
  82. Retamal, M. A., Schalper, K. A., Shoji, K. F., Bennett, M. V., Saez, J. C. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc. Natl. Acad. Sci. U.S.A. 104, 8322-8327 (2007).
  83. Shibayama, J., et al. Effect of charge substitutions at residue his-142 on voltage gating of connexin43 channels. Biophys. J. 91, 4054-4063 (2006).
  84. Desplantez, T., Verma, V., Leybaert, L., Evans, W. H., Weingart, R. Gap26, a connexin mimetic peptide, inhibits currents carried by connexin43 hemichannels and gap junction channels. Pharmacological Research: The Official Journal of the Italian Pharmacological Society. 65, 546-552 (2012).
  85. Delmar, M. Gap junctions as active signaling molecules for synchronous cardiac function. J. Cardiovasc. Electrophysiol. 11, 118-120 (2000).
check_url/fr/50443?article_type=t

Play Video

Citer Cet Article
D’hondt, C., Himpens, B., Bultynck, G. Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells. J. Vis. Exp. (77), e50443, doi:10.3791/50443 (2013).

View Video