Summary

制造,操作和表面声波驱动声逆流微流体流动可视化

Published: August 27, 2013
doi:

Summary

在这段视频中,我们首先描述的表面声波(SAW)声逆流装置的制造和运行程序。然后,我们证明实验装置,允许流量可视化进行定性和定量分析复杂的流量泵送装置内的SAW。

Abstract

表面声波(声表面波)可用于驱动便携式微流体芯片中的液体通过声学逆流现象。在这个视频中,我们提出了一个多层的SAW声逆流装置的制造协议。该设备制作从铌酸锂(LN)的图案化基板上两个叉指式换能器(叉指换能器)和适当的标记。聚二甲基硅氧烷(PDMS)通道蒙上上SU8主的模具终于结合图案的衬底上。随着制造过程中,我们显示技术,让声逆流装置以液体泵通过的PDMS通道电网的特性和操作。我们终于提出的程序可视化的通道中的液体流。该协议是用于显示根据不同的流型,其特征在于由涡流和颗粒堆积域的层流和更加复杂的动态芯片上的流体排出。

Introduction

微社会面临的一个持续挑战是需要有一个高效的抽水机制,可以小型化,融入真正的便携式微计分析系统(μTAS)。标准的宏观泵送系统根本无法提供所需的可移植性μTAS,由于体积流速的不利缩放通道的大小减小到微米范围内或低于。相反,锯已获得了越来越大的兴趣,流体驱动机制,并出现一些这些问题1,2的解决方案作为一个有前途的途径。

锯进行能源运输到流体3提供了非常高效的机制。到一个压电基片上, 例如铌酸锂(LN) ​​的SAW传播时,波将被辐射到的任何流体在其路径中以一个角度被称为瑞利角θR =罪722 1(F / C),由于在衬底中,C S,流体C F声速的不匹配。这种辐射泄漏到流体中产生的压力波在流体驱动声流 。根据适用于该设备上的设备的几何形状和功率,这种机制被示出致动片上的过程,如流体混合,颗粒的分选,雾化,抽水1,4各种各样的。尽管SAW微流体驱动的简单性和有效性,也有只有少数锯驱动微泵机制已被证明日期。第一个示范的免费的液滴放置在表面声波传播路径上的压电基片3的简单的翻译。这种新方法产生了很大兴趣在使用锯作为一种微流体驱动方法,但仍然是一个需要流体被驱动通过封闭的渠道,更艰巨的任务。 Tan 等人泵内的微通道,激光烧蚀成在压电基片直接显示。的几何与通道和IDT尺寸修改,他们能够表现出均匀混合流5。 Glass 等人最近展示了移动,作为一个示范,值得信赖的小型化流行的实验室上的一个CD概念6,7组合SAW驱动旋转离心力的微流体通过微流体和微流体元件的方法。然而,唯一的完全封闭的声表面波驱动泵送机构已被证明仍然是切基尼等。的SAW驱动声逆流8此影片的焦点。它利用流体的雾化和聚结了的传播方向相对的方向通过一个封闭的通道泵波coustic。该系统可以产生令人惊讶的复杂微通道内流动。此外,根据设备的几何形状,它可以提供流量计划的范围内,从层流的涡流和颗粒积累域的特征在于,更复杂的制度。设备内部流动特性的能力,很容易影响显示了先进的片上粒子操纵的机会。

在这个协议中,我们希望澄清实用的基于SAW的微流体设备制造,实验操作,和流量可视化的主要方面。虽然我们明确说明这些程序驱动的SAW声逆流设备的制造和操作,这些部分可以很容易地修改他们的应用的范围SAW驱动微政权的。

Protocol

1。设备制造设计光掩模的图案化中,第一表面声波(SAW)层,和第二的聚二甲基硅氧烷(PDMS)微流道模具。 的第一光掩模具有一对相对的叉指式换能器(叉指换能器),也被称为一个SAW延迟线和信道对应的标记和空间参考,在显微镜。在我们的标准设备,我们有单电极叉指换能器与P = 10微米,孔径为750微米,25个直手指对手指 ​​的宽度。产生所得到的IDT的声表面波的波长…

Representative Results

图2示出的移动设备的RF测试之前采取对LN层键合到微通道层的有代表性的结果:典型的S 11和S 12光谱分别面板a)和b)中报告。在S 11的频谱的中心频率的谷的深度相关的RF功率转换效率,声表面波的机械功率。因此,对于IDT手指对固定数量的,在山谷中的最低的减少将导致操作设备所需的功率减少。在这个最低的频率,该装置将最有效…

Discussion

微社区所面临的最大挑战之一是实现真正的便携式点护理设备驱动平台。其中所提出的集成微型泵23,基于表面声波(声表面波)是特别有吸引力,因为其相关功能流体混合,雾化和粒子浓度和分离4。在本文中,我们已经演示了如何制作和运行流体芯片上的实验室设备是在一个封闭的PDMS微流芯片上集成转向执行器SAW首次描述切基尼。8。

关于…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者有没有人承认。

Materials

Name Company Catalog Number Comments
Double side polished 128° YX lithium niobate wafer Crystal Technology, LLC
Silicon wafer Siegert Wafers We use <100>
IDT Optical lithography mask with alignment marks (positive) Any vendor
Channel Optical lithography mask (negative) Any vendor
Positive photoresist Shipley S1818
Positive photoresist developer Microposit MF319
Negative tone photoresist Allresist AR-N-4340
Negative tone photoresist developer Allresist AR 300-475
SU8 thick negative tone photoresist Microchem SU-8 2000 Series
SU8 thick negative tone photoresist developer Microchem SU-8 developer
Hexadecane Sigma-Aldrich H6703
Carbon tetrachloride (CCl4) Sigma-Aldrich 107344
Octadecyltrichlorosilane (OTS) Sigma-Aldrich 104817
Acetone CMOS grade Sigma-Aldrich 40289
2-propanol CMOS grade Sigma-Aldrich 40301
Titanium Any vendor 99.9% purity
Gold Any vendor 99.9% purity
PDMS Dow Corning Sylgard 184 silicone elastomer kit with curing agent
Petri dish Any vendor
5 mm ID Harris Uni-Core multi-purpose coring tool Sigma-Aldrich Z708895 Any diameter greater than 2 mm is suitable
Acoustic absorber Photonic Cleaning Technologies First Contact regular kit
RF-PCB Any vendor
Spinner Laurell technologies corporation WS-400-6NPP Any spinner can be used
UV Mask aligner Karl Suss MJB 4 Any aligner can be used
Thermal evaporator Kurt J. Lesker Nano 38 Any thermal, e-beam evaporator or sputtering system can be used
Oxygen plasma asher Gambetti Kenologia Srl Colibrì Any plasma asher or RIE machine can be used
Centrifuge Eppendorf 5810 R Any centrifuge can be used
Wire bonder Kulicke & Soffa 4523AD Any wire bonder can be used if the PCB is used without pogo connectors
Contact Angle Meter KSV CAM 101 Any contact angle meter can be used
Spectrum analyzer Anristu 56100A Any spectrum or network analyzer can be used
RF signal generator Anristu MG3694A Any RF signal generator can be used
RF high power amplifier Mini Circuits ZHL-5W-1 Any RF high power amplifier can be used
Microbeads suspension Sigma-Aldrich L3280 Depending on the experimental purpose different suspension of different diameter and different material properties can be used
Optical microscope Nikon Ti-Eclipse Any optical microscope with spatial resolution satisfying experimental purposes can be used
Video camera Basler A602-f Any video camera that has enough frame rate and sensitivity satisfying experimental purposes can be used
Camera acquisition software Advanced technologies Motion Box Any software enabling high and controlled frame rate acquisition can be used

References

  1. Masini, L., Cecchini, M., Girardo, S., Cingolani, R., Pisignano, D., Beltram, F. Surface-acoustic-wave counterflow micropumps for on-chip liquid motion control in two-dimensional microchannel arrays. Lab on a Chip. 10 (15), 1997-2000 (2010).
  2. Travagliati, M., De Simoni, G., Lazzarini, C. M., Piazza, V., Beltram, F., Cecchini, M. Interaction-free, automatic, on-chip fluid routing by surface acoustic waves. Lab on a Chip. 12 (15), 2621-2624 (2012).
  3. Wixforth, A. Acoustically driven planar microfluidics. Superlattices and Microstructures. 33 (5), 389-396 (2003).
  4. Friend, J., Yeo, L. Y. Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics. 83 (2), 647-64 (2011).
  5. Tan, M. K., Yeo, L. Y., Friend, J. R. Rapid fluid flow and mixing induced in microchannels using surface acoustic waves. Europhysics Letters. 87, 47003 (2009).
  6. Glass, N., Shilton, R., Chan, P., Friend, J., Yeo, L. Miniaturised Lab-on-a-Disc (miniLOAD). SMALL, Small. 8 (12), 1880-1880 (2012).
  7. Madou, M. J., Kellogg, G. J. LabCD: a centrifuge-based microfluidic platform for diagnostics. Proceedings of SPIE. 3259, 80 (1998).
  8. Cecchini, M., Girardo, S., Pisignano, D., Cingolani, R., Beltram, F. Acoustic-counterflow microfluidics by surface acoustic waves. Applied Physics Letters. 92 (10), 104103 (2008).
  9. Campbell, C. . Surface acoustic wave devices for mobile and wireless communications. 1, (1998).
  10. Hashimoto, K. Y. . Surface acoustic wave devices in telecommunications: modelling and simulation. , (2000).
  11. Royer, D., Dieulesaint, E. Elastic Waves in Solids II. Generation, Acousto-Optic Interaction, Applications. 2, (2000).
  12. Renaudin, A., Sozanski, J. P., Verbeke, B., Zhang, V., Tabourier, P., Druon, C. Monitoring SAW-actuated microdroplets in view of biological applications. Sensors and Actuators B: Chemical. 138 (1), 374-382 (2009).
  13. Glass, N. R., Tjeung, R., Chan, P., Yeo, L. Y., Friend, J. R. Organosilane deposition for microfluidic applications. Biomicrofluidics. 5 (3), 036501 (2011).
  14. Wereley, S. T., Meinhart, C. D. Recent advances in micro-particle image velocimetry. Annual Review of Fluid Mechanics. 42, 557-576 (2010).
  15. Augustsson, P., Barnkob, R., Wereley, S. T., Bruus, H., Laurell, T. Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. Lab on a Chip. 11 (24), 4152-4164 (2011).
  16. Hebert, B., Costantino, S., Wiseman, P. W. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophysical Journal. 88 (5), 3601 (2005).
  17. Rossow, M., Mantulin, W. W., Gratton, E. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels. Journal of Biomedical Optics. 14 (2), 024014 (2009).
  18. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  19. Rogers, P. R., Friend, J. R., Yeo, L. Y. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. Lab on a Chip. 10 (21), 2979-2985 (2010).
  20. Muller, P. B., Barnkob, R., Jensen, M. J. H., Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab on a Chip. 12 (22), 4617-4627 (2012).
  21. Luo, J. K., Fu, Y. Q., Li, Y., Du, X. Y., Flewitt, A. J., Walton, A. J., Milne, W. I. Moving-part-free microfluidic systems for lab-on-a-chip. Journal of Micromechanics and Microengineering. 19 (5), 054001-05 (2009).
  22. Lindken, R., Rossi, M., Große, S., Westerweel, J. Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines. Lab on a Chip. 9 (17), 2551-2567 (2009).
  23. Gedge, M., Hill, M. Acoustofluidics 17: Theory and applications of surface acoustic wave devices for particle manipulation. Lab on a Chip. 12 (17), 2998-3007 (2012).

Play Video

Citer Cet Article
Travagliati, M., Shilton, R., Beltram, F., Cecchini, M. Fabrication, Operation and Flow Visualization in Surface-acoustic-wave-driven Acoustic-counterflow Microfluidics. J. Vis. Exp. (78), e50524, doi:10.3791/50524 (2013).

View Video