Summary

Nucléosidiques Triphosphates - de la synthèse à caractérisation biochimique

Published: April 03, 2014
doi:

Summary

Le protocole décrit ici vise à expliquer et abréger les nombreux obstacles sur le chemin de la route complexe menant à nucléosides triphosphates modifiés. Par conséquent, ce protocole facilite à la fois la synthèse de ces éléments constitutifs activés et leur disponibilité pour les applications pratiques.

Abstract

La stratégie traditionnelle pour l'introduction de fonctionnalités chimiques est l'utilisation de la synthèse en phase solide par l'ajout de précurseurs des phosphoramidites modifiés de façon appropriée à la chaîne naissante. Cependant, les conditions utilisées lors de la synthèse et de la restriction de séquences assez courtes entravent l'application de cette méthodologie. D'autre part, des triphosphates de nucléosides modifiés sont activés blocs de construction qui ont été utilisées pour l'introduction douce de nombreux groupes fonctionnels dans des acides nucléiques, une stratégie qui ouvre la voie à l'utilisation d'acides nucléiques modifiés dans une palette large d'applications pratiques tels que l'étiquetage fonctionnel et génération de ribozymes et DNAzymes. L'une des principales difficultés réside dans la complexité de la méthode qui conduit à l'isolement et la caractérisation de ces analogues nucléosidiques.

Dans cet article, vidéo, nous présentons un protocole détaillé pour la synthèse des these analogues modifiés en utilisant des réactifs à base de phosphore-(III). En outre, la procédure pour leur caractérisation biochimique est divulguée, avec un accent particulier sur les réactions d'extension d'amorce et TdT polymérisation de résidus. Ce protocole détaillé sera utile pour l'artisanat de dNTP modifiés et leur utilisation ultérieure en biologie chimique.

Introduction

Triphosphates de nucléosides 5'-((d) PNT) représentent une classe de biomolécules vitaux qui sont impliqués dans d'innombrables processus et les fonctions allant d'être la monnaie universelle de l'énergie aux régulateurs du métabolisme cellulaire. En plus de leur rôle dans ces transformations biologiques fondamentaux, leurs homologues modifiés ont avancé comme une plate-forme souple et doux pour l'introduction de groupes fonctionnels dans des oligonucleotides, une méthodologie qui complète bien la synthèse en phase solide automatisée qui est habituellement appliqué 1,2. En effet, à condition que les (d) PNT peuvent agir en tant que substrats pour ADN et ARN polymérases 3, une multitude de groupes fonctionnels, y compris les acides aminés 4-13, acides boroniques 14,15, 16, nornbornene résidus diamondoïde-17, comme des chaînes latérales pour organocatalyse 18, les acides biliaires, et même des 19 oligonucleotides 20 peut être introduit dans des oligonucleotides.

_content "> Au-delà de ce qui représente un vecteur convenable pour la fonctionnalisation d'acides nucléiques, de dNTP modifiés peuvent être engagés dans SELEX et d'autres méthodes combinatoires connexes de sélection in vitro pour la production d'acides nucléiques catalytiques modifiées 21-30 et les aptamères pour diverses 10 applications pratiques, 31-36. Les chaînes latérales supplémentaires qui sont introduites par la polymérisation des dNTP modifiés sont pensés pour augmenter l'espace chimique qui peut être explorée lors d'une expérience de sélection et de compléter l'arsenal fonctionnel plutôt pauvres d'acides nucléiques 37. Cependant, malgré ces traits attrayants et les progrès récemment accomplis dans le développement de deux méthodes d'analyse et de synthèse, universellement applicable et la procédure à haut rendement existe pour l'artisanat de nucléosides triphosphates modifiés 2,38.

L'objectif de ce protocole actuel est de faire la lumière dans la (parfois) des procédures complexes menant to la synthèse et la caractérisation biochimique de ces blocs de construction activées (figure 1B). Une attention particulière sera accordée sur tous les détails synthétiques qui sont souvent difficiles à trouver ou sont absents dans les sections expérimentales mais sont encore crucial pour la réussite de la voie de synthèse conduisant à l'isolement de (d) PNT purs (figure 1).

Protocol

Une. Synthèse des nucléosides triphosphates modifiés L'approche de synthèse choisie suit la procédure mise au point par Ludwig et Eckstein puisque cette méthode est généralement fiable et conduit à très peu de produits secondaires (figure 1A) 39. Coevaporate le nucléoside 3'-OAc convenablement protégé (typiquement 0,1 mmol) deux fois avec de la pyridine anhydre (2 ml), puis séché sous vide pendant une nuit. Dans le même temps, le…

Representative Results

Nucléosides triphosphates modifiés sont séduisantes cibles synthétiques, car ils permettent la mise en place facile d'un vaste éventail de groupes fonctionnels dans des acides nucléiques 41. Cependant, l'isolement et la caractérisation de ces blocs de construction activés est souvent révélée être difficile. Par conséquent, les résultats présentés ici sont pensés pour offrir un coup de main pour suivre les différentes étapes dans les procédés de synthèse et biochimiques ci-dessus …

Discussion

L'inclusion des modifications dans les acides nucléiques de l'intérêt pour de nombreuses applications pratiques, y compris le développement de antisens et antigéniques des agents 42,43, l'étiquetage et le marquage fonctionnelle d'oligonucléotides 41, et dans les efforts visant à élargir l'alphabet génétique 44-46. des altérations chimiques et les groupes fonctionnels sont généralement introduits dans des acides nucléiques par l'application de protoc…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Ce travail a été soutenu par le Fonds national suisse (subventions n ° PZ00P2_126430 / 1 et PZ00P2_144595). Professeur C. Leumann est grandement apprécié pour fournir l'espace et l'équipement de laboratoire, ainsi que pour son soutien constant. Mme Sue Knecht est reconnu pour des discussions fructueuses.

Materials

tributylammonium pyrophosphate  Sigma Aldrich P8533 Hygroscopic solid, keep under Ar
2-chloro-1,3,2-benzodioxaphosphorin-4-one  Sigma Aldrich 324124 Moisture sensitive
Pyridine Sigma Aldrich 82704 Under molecular sieves
Dioxane Sigma Aldrich 296309 Under molecular sieves
dimethylformamide (DMF) Sigma Aldrich 40248 Under molecular sieves
Acetonitrile  Fisher Scientific HPLC grade
Triethylamine Sigma Aldrich 90342
Tributylamine Sigma Aldrich 90781
ddH2O Milli-Q deionized and purified water, autoclaved in the presence of Diethylpyrocarbonate (DEPC)
Diethylpyrocarbonate (DEPC) Sigma Aldrich 159220
D2O Cambridge Isotope Laboratories, Inc. DLM-4-25
Biochemical reagents
g-[32P]-ATP Hartmann Analytics FP-301
Natural dNTPs Promega U1420
Vent (exo) DNA polymerase NEB M0257S
DNA polymerase I, Large (Klenow) Fragment NEB MO210S
9°Nm DNA polymerase NEB MO260S
Terminal deoxynucleotidyl Transferase (TdT) Promega M828A
Pwo DNA polymerase Peqlab 01 01 5010
T4 PNK Thermo Scientific EK0032
Acrylamide/bisacrylamide (19:1, 40%) Serva 10679.01
Agarose Apollo Scientific BIA1177
G10 Sephadex Sigma G10120
Urea Apollo Scientific BIU4110
Equipment
Jupiter semi-preparative RP-HPLC column (5m C18 300Å) Phenomenex
Gene Q Thermal Cycler Bioconcept BYQ6042E
PCR vials Bioconcept 3220-00
HPLC system Amersham Pharmacia Biotech Äkta basic 10/100
Oligonucleotides
All oligonucleotides were purchased from Microsynth and purified by PAGE
5'-CAAGGACAAAATACCTGTATTCCTT P1
5'-GACATCATGAGAGACATCGCCTCTGGGCTAAT-AGGACTACTTCTAATCTGTAAGAGCAGATCCCTGG-ACAGGCAAGGAATACAGGTATTTTGTCCTTG T1
5'-GAATTCGATATCAAG P2
More information on experimental procedures and equipment can be found in the following articles:
Chem. Eur. J. 2012, 18, 13320 – 13330
Org. Biomol. Chem. 2013, DOI: 10.1039/C3OB40842F.

References

  1. Hocek, M., Fojta, M. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids. Org. Biomol. Chem. 6, 2233-2241 (2008).
  2. Hollenstein, M. Nucleoside Triphosphates – Building Blocks for the Modification of Nucleic Acids. Molecules. 17, 13569-13591 (2012).
  3. Lauridsen, L. H., Rothnagel, J. A., Veedu, R. N. Enzymatic Recognition of 2′-Modified Ribonucleoside 5′-Triphosphates: Towards the Evolution of Versatile Aptamers. ChemBioChem. 13, 19-25 (2012).
  4. Roychowdhury, A., Illangkoon, H., Hendrickson, C. L., Benner, S. A. 2′-Deoxycytidines Carrying Amino and Thiol Functionality: Synthesis and Incorporation by Vent (Exo-) Polymerase. Org. Lett. 6, 489-492 (2004).
  5. Dewey, T. M., Mundt, A. A., Crouch, G. J., Zyzniewski, M. C., Eaton, B. E. New Uridine Derivatives for Systematic Evolution of RNA Ligands by Exponential Enrichment. J. Am. Chem. Soc. 117, 8474-8475 (1995).
  6. Kuwahara, M., et al. Direct PCR amplification of various modified DNAs having amino acids: Convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg. Med. Chem. 14, 2518-2526 (2006).
  7. Jäger, S., Famulok, M. Generation and Enzymatic Amplification of High-Density Functionalized DNA Double Strands. Angew. Chem. Int. Ed. 43, 3337-3340 (2004).
  8. Thum, O., Jäger, S., Famulok, M. Functionalized DNA: A New Replicable Biopolymer. Angew. Chem. Int. Ed. 40, 3990-3993 (2001).
  9. Jäger, S., et al. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 127, 15071-15082 (2005).
  10. Vaught, J. D., et al. Expanding the Chemistry of DNA for in Vitro Selection. J. Am. Chem. Soc. 132, 4141-4151 (2010).
  11. Sakthivel, K., Barbas, C. F. Expanding the Potential of DNA for Binding and Catalysis: Highly Functionalized dUTP Derivatives That Are Substrates for Thermostable DNA Polymerases. Angew. Chem. Int. Ed. 37, 2872-2875 (1998).
  12. Raindlová, V., Pohl, R., Hocek, M. Synthesis of Aldehyde-Linked Nucleotides and DNA and Their Bioconjugations with Lysine and Peptides through Reductive Amination. Chem. Eur. J. 18, 4080-4087 (2012).
  13. Hollenstein, M. Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues – Synthesis and biochemical characterization. Org. Biomol. Chem. 11, 5162-5172 (2013).
  14. Cheng, Y., et al. Synthesis, and Polymerase-Catalyzed Incorporation of Click-Modified Boronic Acid-TTP Analogues. Chem. Asian J. 6, 2747-2752 (2011).
  15. Lin, N., et al. Design and synthesis of boronic-acid-labeled thymidine triphosphate for incorporation into DNA. Nucleic Acids Res. 35, 1222-1229 (2007).
  16. Schoch, J., Jäschke, A. Synthesis and enzymatic incorporation of norbornenemodified nucleoside triphosphates for Diels–Alder bioconjugation. RSC Adv. 3, 4181-4183 (2013).
  17. Biomol Chem, O. r. g. . 9, 7482-7490 (2011).
  18. Hollenstein, M. Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfamide groups and their polymerase incorporation into DNA. Chem. Eur. J. 18, 13320-13330 (2012).
  19. Ikonen, S., Macíčková-Cahová, H., Pohl, R., Šanda, M., Hocek, M. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA. Org. Biomol. Chem. 8, 1194-1201 (2010).
  20. Baccaro, A., Steck, A. -. L., Marx, A. . Barcoded Nucleotides. Angew. Chem. Int. Ed. 51, 254-257 (2012).
  21. Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S., Barbas, C. F. RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122, 2433-2439 (2000).
  22. Sidorov, A. V., Grasby, J. A., Williams, D. M. Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res. 32, 1591-1601 (2004).
  23. Perrin, D. M., Garestier, T., Hélène, C. Bridging the gap between proteins and nucleic acids: A metal-independent RNAseA mimic with two protein-like functionalities. J. Am. Chem. Soc. 123, 1556-1563 (2001).
  24. Hollenstein, M., Hipolito, C., Lam, C., Dietrich, D., Perrin, D. M. A highly selective DNAzyme sensor for mercuric ions. Angew. Chem. Int. Ed. 47, 4346-4350 (2008).
  25. Hollenstein, M., Hipolito, C. J., Lam, C. H., Perrin, D. M. A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2). Nucleic Acids Res. 37, 1638-1649 (2009).
  26. Hollenstein, M., Hipolito, C. J., Lam, C. H., Perrin, D. M. A DNAzyme with Three Protein-Like Functional Groups: Enhancing Catalytic Efficiency of M2+-Independent RNA Cleavage. ChemBioChem. 10, 1988-1992 (2009).
  27. Hollenstein, M., Hipolito, C. J., Lam, C. H., Perrin, D. M. Toward the Combinatorial Selection of Chemically Modified DNAzyme RNase A Mimics Active Against all-RNA Substrates. ACS Comb. Sci. 15, 174-182 (2013).
  28. Hipolito, C. J., Hollenstein, M., Lam, C. H., Perrin, D. M. Protein-inspired modified DNAzymes: dramatic effects of shortening side-chain length of 8-imidazolyl modified deoxyadenosines in selecting RNaseA mimicking DNAzymes. Org. Biomol. Chem. 9, 2266-2273 (2011).
  29. Lam, C. H., Hipolito, C. J., Hollenstein, M., Perrin, D. M. A divalent metal-dependent self-cleaving DNAzyme with a tyrosine side chain. Org. Biomol. Chem. 9, 6949-6954 (2011).
  30. Wiegand, T. W., Janssen, R. C., Eaton, B. E. Selection of RNA amide synthase. Chem. Biol. 4, 675-683 (1997).
  31. Battersby, T. R., et al. Quantitative Analysis of Receptors for Adenosine Nucleotides Obtained via In Vitro Selection from a Library Incorporating a Cationic Nucleotide Analog. J. Am. Chem. Soc. 121, 9781-9789 (1999).
  32. Latham, J. A., Johnson, R., Toole, J. J. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing -(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Res. 22, 2817-2822 (1994).
  33. Masud, M. M., Kuwahara, M., Ozaki, H., Sawai, H. Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX. Bioorg. Med. Chem. 12, 1111-1120 (2004).
  34. Shoji, A., Kuwahara, M., Ozaki, H., Sawai, H. Modified DNA aptamer that binds the (R)-Isomer of a thalidomide derivative with high enantioselectivity. J. Am. Chem. Soc. 129, 1456-1464 (2007).
  35. Yu, H., Zhang, S., Chaput, J. C. Darwinian Evolution of an Alternative Genetic System Provides Support for TNA as an RNA Progenitor. Nat. Chem. 4, 183-187 (2012).
  36. Davies, D. R., et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl. Acad. Sci. USA. 109, 19971-19976 (2012).
  37. Kuwahara, M., Sugimoto, N. Molecular Evolution of Functional Nucleic Acids with Chemical Modifications. Molecules. 15, 5423-5444 (2010).
  38. Burgess, K., Cook, D. Syntheses of Nucleoside Triphosphates. Chem. Rev. 100, 2047-2059 (2000).
  39. Ludwig, J., Eckstein, F. Rapid and efficient synthesis of nucleoside 5′-0-(1-thiotriphosphates), 5′-triphosphates and 2′,3′-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one. J. Org. Chem. 54, 631-635 (1989).
  40. Williams, D. M., Harris, V. H., Murphy, J. Chapter 3. Organophosphorus Reagents: A Practical Approach in Chemistry. 9, 237-275 .
  41. Hocek, M., Fojta, M. Nucleobase modification as redox DNA labelling for electrochemical detection. Chem. Soc. Rev. 40, 5802-5814 (2011).
  42. Kurreck, J. Antisense technologies – Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628-1644 (2003).
  43. Wilson, C., Keefe, A. D. Building oligonucleotide therapeutics using non-natural chemistries. Curr. Opin. Chem. Biol. 10, 607-614 (2006).
  44. Krueger, A. T., Kool, E. T. Model systems for understanding DNA base pairing. Curr. Opin. Chem. Biol. 11, 588-594 (2007).
  45. Krueger, A. T., Lu, H., Lee, A. H. F., Kool, E. T. Synthesis and Properties of Size-Expanded DNAs: Toward Designed, Functional Genetic Systems. Acc. Chem. Res. 40, 141-150 (2007).
  46. Wojciechowski, F., Leumann, C. J. Alternative DNA base-pairs: from efforts to expand the genetic code to potential material applications. Chem. Soc. Rev. 40, 5669-5679 (2011).
  47. Weisbrod, S. H., Marx, A. Novel strategies for the site-specific covalent labelling of nucleic acids. Chem. Commun. 30 (44), 5675-5685 (2008).
  48. Lim, S. E., Copeland, W. C. Differential Incorporation and Removal of Antiviral Deoxynucleotides by Human DNA Polymerase γ. J. Biol. Chem. 276, 23616-26623 (2001).
  49. Cho, Y., Kool, E. T. Enzymatic Synthesis of Fluorescent Oligomers Assembled on a DNA Backbone. ChemBioChem. 7, 669-672 (2006).
  50. Hollenstein, M., Wojciechowski, F., Leumann, C. J. Polymerase incorporation of pyrene-nucleoside triphosphates. Bioorg. Med. Chem. Lett. 22, 4428-4430 (2012).
  51. Kuwahara, M., et al. Smart conferring of nuclease resistance to DNA by 3′-end protection using 2′,4′-bridged nucleoside-5′-triphosphates. Bioorg. Med. Chem. Lett. 19, 2941-2943 (2009).
  52. Horáková, P., et al. Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays. Org. Biomol. Chem. 9, 1366-1371 (2011).
  53. Motea, E. A., Berdis, A. J. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase. Biochim. Biophys. Acta. 1804, 1151-1166 (2010).
check_url/fr/51385?article_type=t

Play Video

Citer Cet Article
Hollenstein, M., Smith, C. C., Räz, M. Nucleoside Triphosphates – From Synthesis to Biochemical Characterization. J. Vis. Exp. (86), e51385, doi:10.3791/51385 (2014).

View Video