Summary

Sonication-facilitated Immunofluorescence Staining of Late-stage Embryonic and Larval Drosophila Tissues In Situ

Published: August 14, 2014
doi:

Summary

Immunostaining is an effective technique for visualizing specific cell types and proteins within tissues. By utilizing sonication, the protocol described here alleviates the need to dissect Drosophila melanogaster tissues from late-stage embryos and larvae before immunostaining. We provide an efficient methodology for the immunostaining of formaldehyde-fixed whole mount larvae.

Abstract

Studies performed in Drosophila melanogaster embryos and larvae provide crucial insight into developmental processes such as cell fate specification and organogenesis. Immunostaining allows for the visualization of developing tissues and organs. However, a protective cuticle that forms at the end of embryogenesis prevents permeation of antibodies into late-stage embryos and larvae. While dissection prior to immunostaining is regularly used to analyze Drosophila larval tissues, it proves inefficient for some analyses because small tissues may be difficult to locate and isolate. Sonication provides an alternative to dissection in larval Drosophila immunostaining protocols. It allows for quick, simultaneous processing of large numbers of late-stage embryos and larvae and maintains in situ morphology. After fixation in formaldehyde, a sample is sonicated. Sample is then subjected to immunostaining with antigen-specific primary antibodies and fluorescently labeled secondary antibodies to visualize target cell types and specific proteins via fluorescence microscopy. During the process of sonication, proper placement of a sonicating probe above the sample, as well as the duration and intensity of sonication, is critical. Additonal minor modifications to standard immunostaining protocols may be required for high quality stains. For antibodies with low signal to noise ratio, longer incubation times are typically necessary. As a proof of concept for this sonication-facilitated protocol, we show immunostains of three tissue types (testes, ovaries, and neural tissues) at a range of developmental stages.

Introduction

Drosophila embryos and larvae provide an excellent model to study developmental processes in many organs and tissues. Imaging of individual cells is often necessary in these studies in order to ascertain the complex environments in which cells develop. Visualization of cells in tissues can be accomplished through immunostaining. Well-described immunostaining protocols exist for embryonic Drosophila tissues <17 hr after egg laying (AEL)1-3. However, a protective cuticle forms toward the end of embryogenesis, preventing effective antibody permeation. Thus, these immunostaining protocols are inefficient in the analysis of tissues in late-stage embryos and in subsequent stages of larval development (1st instar (L1), 2nd instar (L2), and 3rd instar (L3)). This inefficiency imposes a barrier to our understanding of dynamic processes that occur during this extended developmental period 4. Tissue dissection is a widely employed technique to circumvent this barrier 5-7. However, dissection can prove inefficient. Extraction may be encumbered by difficulty in locating or isolating embryonic and larval tissues. Furthermore, the physical removal of target tissues may cause damage by rupturing them or by failing to extract them in their entirety.

Sonication is a method that employs sound waves to disturb intermolecular interactions. It has been used to disrupt the integrity of the Drosophila larval cuticle in order to immunostain developing neural cell types 6. This protocol has been adapted to immunostain late-stage embryonic and larval gonads, which can be as small as 50μm in diameter 8-10. Through such studies, the process of male germline stem cell (GSC) niche formation has been characterized in late stage Drosophila embryos8-10 and mechanisms regulating stem cell development and differentiation in late stage embryonic gonads and larvae have been elucidated 9-12. Thus, sonication provides an efficient alternative to tissue dissection that may be difficult because of tissue size. Furthermore, it enables immunostaining of Drosophila tissues in situ, leaving cells within the context of the entire organism and maintaining in situ morphology. Here, we describe a step-by-step protocol for fluorescence immunostaining of late-stage embryonic through early/mid-L3 tissues in situ. Analysis of Drosophila gonadal and neural tissue is shown in the Representative Results to demonstrate the efficacy of this protocol. Furthermore, this immunostaining protocol may be adapted to analyze other Drosophila tissues as well as tissues in other organisms with an outer cuticle.

Protocol

1. Preparation of a Collection Cage Anesthetize young, fertile flies with CO2. Transfer anesthetized flies to a cage. To obtain optimal yield, use 100-120 adult flies ranging from 2-7 days of age at a 4:1 ratio of females to males. Allow flies an appropriate acclimation period, ~24 hr prior to obtaining sample for fixation. If the cage was set up with virgin females mated to males, a use a 36 – 48 hr acclimation period. On the open end of the cage, place a pre-prepared apple juice ag…

Representative Results

To demonstrate the efficacy of sonication-based immunostaining in analysis of late-stage embryonic and larval tissues in situ, wild-type embryos and larvae were processed for immunostaining of testes, ovaries, and neural tissue. Samples were imaged via confocal microscopy and representative results are shown (Figure 1 and Figure 2). Results reveal that the described protocol is effective for visualizing morphological features as well as individual cells in situ during l…

Discussion

This protocol provides a method to successfully immunostain target Drosophila embryonic and larval tissues in situ, thus eliminating the need for dissection. As per prior protocols for staining early embryos1,2,3, the chorionic membrane is removed using 50% bleach (NaOCl). Samples are fixed in formaldehyde and methanol. Because the larval cuticle causes older sample to float, the entire sample is then passed through a cell-strainer to ensure larval retention. Sample is stored, if desired, in …

Divulgations

The authors have nothing to disclose.

Acknowledgements

We are grateful to Ruth Lehman and Dorthea Godt who kindly supplied Vasa and Traffic Jam antibodies. We would like to acknowledge the Bloomington Stock Center at Indiana University for maintaining the provided stocks and the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa. We thank all members of the Wawersik lab for their advice and support. This work was funded by the Monroe Scholars Program Grant (to AF and LB) and NSF grant IOS0823151 (to MW).

Materials

Table 1: Reagents and Buffers
Phosphate Buffer Triton X-100 (PBTx) For 5 L: 500 mL PBS 10X 4.45 L ddH2O 50 mL Triton 10% Store at room temperature.
Phosphate Buffer Saline 10x (PBS 10X) For 1 L in dH2O: 80 g NaCl 2 g KCl 14.4g Na2HPO4 2.4 g KH2PO4 Add components and fill to appropriate volume. Store at 4 degrees C.
Triton 10% For 50 mL: 5 mL of Triton 5 mL of PBS 10X 45 mL of ddH2O Rock to mix. Store at room temperature.
PEMS 0.1 M Pipes (pH 6.9) 2.0 mM MgSO4 1.0 mM EGTA Store at room temperature.
Pipes For a 400ml of a 0.25 M solution (pH 6.9): 30.24 g Pipes dH20 NaOH Dissolve Pipes in 300 mL dH2Oand then adjust to pH 6.9 with NaOH. Bring the total volume to 400 mL with dH2O and autoclave. Store at room temperature.
Formaldehyde 37% formaldehyde by weight in methanol Store at room temperature. Store formaldehyde, heptane, and methanol waste mixture in a tightly sealed container in fume hood before disposal as per institutional guidelines.
Heptane n-Heptane CAS 142-82-5. Store at room temperature. Store formaldehyde, heptane, and methanol waste mixture in a tightly sealed container in fume hood before disposal as per institutional guidelines.
Methanol Methanol CAS 67-56-1. Store at room temperature. Store formaldehyde, heptane, and methanol waste mixture in a tightly sealed container in fume hood before disposal as per institutional guidelines.
Phosphate Buffer Tween (PBTw) To make 1 L: 100 mL PBS 10X 890 mL ddH2O 10 mL Tween 10% Filter sterilize after adding all components. Store at 4 degrees C.
Tween 10% For 50 mL: 5 mL Tween 5 mL of PBS 10X 40 mL of ddH2O Rock to mix. Store at room temperature.
Bovine Serum Albumin/Phosphate Buffer Tween (BBTw) To make 1 L: 100 mL PBS 10X 890 mL ddH2O 10 mL Tween 10% 1 g Bovine Serum Albumin (BSA) Add BSA then sterilize using a 0.2 micrometer vacuum filter unit. Store at 4 degrees C.
Normal Goat Serum (NGS) To make 10 mL: Normal Goat Serum (Jackson ImmunoResearch Laboratories Code: 005-000-121) 10 mL ddH2O Add ddH2O to vial of NGS and sterilize using a 0.2 micrometer syrninge filter. Store aliquots at -20 degrees C.
1,4-diazabicyclo[2.2.2]octane (DABCO) To make 100 mL: 25 mL ddH2O 1 mL Tris HCl (1M, pH 7.5) 2.5 g of DABCO solid (CAS: 281-57-9) 3.5 mL 6N HCl 250 uL 10N NaOH 70 mL glycerol In 250 mL beaker with stir bar, add ddH2O, Tris HCl and DABCO. Stir and then add 6N HCl, 10 N NaOH, and glycerol. Then add 10NaOH dropwise until solution reaches pH 7.5. Aliquot. Store aliquots at -20 degrees C.
DABCO + p-phenylenediamine (PPD) Solution 1.765 mL NaHCO3 0.353 Na2CO3 0.02 g PPD (CAS: 106-50-3) Dissolve PPD in NaHCO3 and NaCO3 solution. Add 60 uL of PPD solution to 500 uL of DABCO. Store aliquots at -20 degrees C.
Apple juice plates To make ~200 plates: 45 g agar (CAS#9002-18-0) 45 g granulated sugar (store bought) 500 mL Apple juice (store bought) 15 mL Tegosept 10% 1.5 mL ddH2O Add agar to ddH2O in 4L flask then autoclave for 30 minuntes. Mix apple juice and sugar on heated stir plate. Gradually add apple juice mixture to autoclaved agar. Mix on heated stir plate then aliquot 10mL volumes into 35 mm petri dishes and let stand at room temperature to solidfy. Store at 4 degrees C.
Tegosept 10% To make 100mL: 10g Tegosept 100 mL Ethanol Store aliquots at -20 degrees C
Yeast paste ~50 g Dry Active Yeast Gradually add ddH2O to beaker containing yeast while stirring until paste-like consistency reached. Store at 4 degrees C.
Table 2: Staining Materials
DAPI 1:1000 Invitrogen D3571 //// Stock at 5mg/mL
rabbit anti-Vasa 1:250 A gift from Ruth Lehmann
mouse anti-Fasciclin III 1:10 Developmental Studies Hybridoma Bank (DSHB) 7G10
mouse anti-1B1 1:4 Developmental Studies Hybridoma Bank (DSHB) 1B1
guniea pig anti-Traffic Jam 1:2500 A gift from Dorthea Godt (Li et al, 2003)
mouse anti-Prospero 1:10 Developmental Studies Hybridoma Bank (DSHB) Prospero MR1A
rat anti-Elav 1:30 Developmental Studies Hybridoma Bank (DSHB) Rat-elav 7EBA10 anti-elav
mouse anti-Repo 1:10 Developmental Studies Hybridoma Bank (DSHB) 8D12 anti-Repo
goat anti-rabbit Alexa546 1:500 Invitrogen A11010
goat anti-mouse Alexa488 1:500 Invitrogen A11029
goat anti-guniea pig Alexa633 1:500 Invitrogen A21105
goat anti-rat Alexa488 1:500 Invitrogen A11006
Table 3: Materials and Equipment
Fly Cages Hand-made; Genesee Scientific Corporation Not applicable; Bottles: 32-130; Pre-made cage: 59-101 Made by cutting clear cast acrylic tubing (1 3/4 inch in diameter) into 4 inch tall segments with a compound miter saw at 400 rpm. Ultrafine stainless steel screening (was attached to one end of the tub with acrylic compund glue. An alternate method using an empty fly food bottle can be found in Drosophila Protocols ISBN 0-87969-584-4. Cages may also be purchased from the Genesee Scientific Corporation.
Sonicator: Branson 250 Digital Sonifier Branson Model: Branson Digital Sonifier 250
Sonicator Probe Branson Model #: 102C (CE) EDP: 101-135-066; S/N: OBU06064658
Syringe filter Nalgene 190-25-20 0.2 micrometer cellulose, acetate membrane filter
Imaging system: Spinning disc confocal microscope with multichromatic light source, digital CCD camera, and imaging software Microscope: Olympus Light source: Lumen Dynamics Camera: Q-Imaging Imaging Software: Intelligent Imaging Inc. Microscope: BX51 equipped with DSU spinning disc Light source: X-Cite 120Q Camera: RETIGA-SRV Imaging Software: Slidebook 5.0
Vacuum filter unit Nalgene 450-0020 0.2 micrometer cellulose nitrate membrane filter

References

  1. Moore, L. A., Broihier, H. T., Van Doren, M., Lunsford, L. B., Lehmann, R. Identification of genes controlling germ cell migration and embryonic gonad formation in Drosophila. Development. 125, 667-678 (1998).
  2. Rothwell, W. F., Sullivan, W. . Drosophila Protocols. , 141-157 (2000).
  3. Jenkins, A. B., McCaffery, J. M., Van Doren, M. Drosophila E-cadherin is essential for proper germ cell-soma interaction during gonad morphogenesis. Development. 130, 4417-4426 (2003).
  4. Ashburner, M., Golic, K., Hawley, R. S. . Drosophila: A Laboratory Handbook. , 122-205 (2005).
  5. Blair, S. S., Sullivan, W., Ashburner, M., Hawley, R. S. . Drosophila Protocols. , 159-173 (2000).
  6. Patel, N., Goldstei, L. S. B., Fryberg, E. A. Drosophila melanogaster: Practical Uses in Cell and Molecular Biology. Methods in Cell Biology. , 445-487 (1994).
  7. Maimon, I., Gilboa, L. Dissection and staining of Drosophila larval ovaries. J Vis Exp. , (2011).
  8. Le Bras, S., Van Doren, M. Development of the male germline stem cell niche in Drosophila. Dev Biol. 294, 92-103 (2006).
  9. Sheng, X. R., et al. Jak-STAT regulation of male germline stem cell establishment during Drosophila embryogenesis. Dev Biol. 334, 335-344 (2009).
  10. Sinden, D., et al. Jak-STAT regulation of cyst stem cell development in the Drosophila testis. Dev Biol. 372, 5-16 (2012).
  11. DeFalco, T., Camara, N., Le Bras, S., Van Doren, M. Nonautonomous sex determination controls sexually dimorphic development of the Drosophila gonad. Dev Cell. 14, 275-286 (2008).
  12. Jemc, J. C., Milutinovich, A. B., Weyers, J. J., Takeda, Y., Van Doren, M. raw Functions through JNK signaling and cadherin-based adhesion to regulate Drosophila gonad morphogenesis. Dev Biol. 367, 114-125 (2012).
  13. Fuller, M., Bat, M., Martinez Arias, A. . The Development of Drosophila melanogaster. , 71-147 (1993).
  14. Cuevas, M., Matunis, E. L. The stem cell niche: Lessons from Drosophila testis. Development. 138, 2861-2869 (2011).
  15. Williamson, A., Lehmann, R. Germ cell development in Drosophila. Annu Rev Cell Dev Biol. 12, 365-391 (1996).
  16. Jemc, J. C. Somatic gonadal cells: the supporting cast for the germline. Genesis. 49, 753-775 (2011).
  17. Spradling, A. C., Bat, M., Martinez Arias, A. . The Development of Drosophila melanogaster. , 1-70 (1993).
  18. Eliazer, S., Buszczak, M. Finding a niche: studies from the Drosophila ovary. Stem Cell Res Ther. 2, 45 (2011).
  19. Sahut-Barnola, I., Godt, D., Laski, F. A., Couderc, J. L. Drosophila ovary morphogenesis: Analysis of terminal filament formation and identification of a gene required for this process. Biologie du développement. 170, 127-135 (1995).
  20. Godt, D., Laski, F. A. Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric a brac. Development. 121, 173-187 (1995).
  21. Gancz, D., Lengil, T., Gilboa, L. Coordinated regulation of niche and stem cell precursors by hormonal signaling. PLoS Biol. 9, e1001202 (2011).
  22. Matsuoka, S., Hiromi, Y., Asaoka, M. Egfr signaling controls the size of the stem cell precursor pool in the Drosophila ovary. Mech Dev. 130, 241-253 (2013).
  23. Song, X., Zhu, C. H., Doan, C., Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 296, 1855-1857 (2002).
  24. Homem, C. C., Knoblich, J. A. Drosophila. neuroblasts: a model for stem cell biology. Development. 139, 4297-4310 (2012).
  25. Urbach, R., Technau, G. M. Neuroblast formation and patterning during early brain development in Drosophila. BioEssays. 26, 739-751 (2004).
  26. Bello, B., Reichert, H., Hirth, F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development. 133, 2639-2648 (2006).
  27. Lee, C. Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P., Doe, C. Q. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell. 10, 441-449 (2006).
  28. Betschinger, J., Mechtler, K., Knoblich, J. A. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell. 124, 1241-1253 (2006).
  29. Pereanu, W., Shy, D., Hartenstein, V. Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol. 283, 191-203 (2005).
  30. Moraru, M. M., Egger, B., Bao, D. B., Sprecher, S. G. Analysis of cell identity, morphology, apoptosis and mitotic activity in a primary neural cell culture system in Drosophila. Neural Dev. 7, 14 (2012).
check_url/fr/51528?article_type=t

Play Video

Citer Cet Article
Fidler, A., Boulay, L., Wawersik, M. Sonication-facilitated Immunofluorescence Staining of Late-stage Embryonic and Larval Drosophila Tissues In Situ. J. Vis. Exp. (90), e51528, doi:10.3791/51528 (2014).

View Video