Summary

对无瘢痕修复鼠标胎儿皮肤模型

Published: January 16, 2015
doi:

Summary

During mammalian development, early gestational skin wounds heal without a scar. Here we detail a reliable and reproducible model of fetal scarless wound healing in the cutaneous dorsum of E16.5 (scarless) and E18.5 (scarring) mouse embryos.

Abstract

Early in utero, but not in postnatal life, cutaneous wounds undergo regeneration and heal without formation of a scar. Scarless fetal wound healing occurs across species but is age dependent. The transition from a scarless to scarring phenotype occurs in the third trimester of pregnancy in humans and around embryonic day 18 (E18) in mice. However, this varies with the size of the wound with larger defects generating a scar at an earlier gestational age. The emergence of lineage tracing and other genetic tools in the mouse has opened promising new avenues for investigation of fetal scarless wound healing. However, given the inherently high rates of morbidity and premature uterine contraction associated with fetal surgery, investigations of fetal scarless wound healing in vivo require a precise and reproducible surgical model. Here we detail a reliable model of fetal scarless wound healing in the dorsum of E16.5 (scarless) and E18.5 (scarring) mouse embryos.

Introduction

胎儿皮肤伤口愈合迅速,scarlessly直到怀孕后期1。胎疤痕伤口修复的特征在于正常组织结​​构和功能的再生。从瘢痕瘢痕表型的转变发生在怀孕的人类和周围18天胚胎(E18)小鼠2,3孕晚期。相较于成人,胎儿伤口修复的特征在于快速上皮,结缔组织沉积和成纤维细胞的迁移。

在早期胎儿发育许多研究都提供了可能的解释为瘢痕伤口愈合的现象。炎症是成人创面修复的一个基本组成部分;然而,胎儿伤口的特征在于缺乏急性炎症4。这是否是免疫系统的过程中的胎儿阶段官能不成熟的结果仍不清楚。最近的一项研究表明,在丰富,垫差异urity,和肥大细胞在E15与E18的胎儿皮肤的功能可以负责从瘢痕表型的转变中,至少在小鼠3。其他的研究断定,在性能和丰富的胎儿和成人伤口巨噬细胞的差异是负责正常的细胞外基质(ECM)的过程中胎儿创伤修复5的改革。

胎儿和成人发育期间差异在环境因素也可能影响伤口修复。龙雅葛和他的同事发现,从胎儿伤口液具有较高水平的透明质酸刺激活性相比,无成人伤口流体6。因此,更高水平的透明质酸,糖胺聚糖促进有利于细胞运动和增殖的微环境,在胎儿的伤口环境的可负责的瘢痕的表型在早期胎儿发育看见。其他线路的证据指向的一个事实,即在羊升伤口环境相对低氧血症和淹没在无菌羊水丰富的生长因子,7。然而,没有明确的答案已提供用于胚胎发育过程中的关键事件或因素触发从瘢痕再生纤维变性修复的过渡。

理解的机制负责在胎儿无瘢痕愈合就必须精确和可再现的模型。在这里,我们详细胎儿无瘢痕愈合的E16.5(无疤痕)和E18.5(疤痕)的小鼠胚胎的背部可再现的模型。此外,该模型的微小变化可用于执行许多进一步的研究,如胎儿的伤口和皮肤8,9的基因表达分析。鉴于精确定时怀孕是此无瘢痕伤口愈合模式成功的关键再演,我们对超排定时怀孕也详细我们的协议。

Protocol

注:本文中所描述的所有程序都是根据斯坦福大学行政专家组对实验动物护理(APLAC)制定的准则进行。 1.定时怀孕 – 超数排卵技术(图1) 注:精确定时小鼠胚胎的孕周胎儿外科E16.5和E18.5是至关重要的。在这一节中我们详细介绍我们使用怀孕母马血清(PMS)和人绒毛膜促性腺激素(HCG)注射诱导超数排卵定时鼠标怀孕协议。 注射雌性小鼠(<5?…

Representative Results

对于组织学分析,皮肤伤口在E16.5和E18.5小鼠胚胎的背部皮肤,应收获后48小时伤人,固定在4%PFA和石蜡包埋。在荧光的转基因模型中,冷冻保存与十月可能是适当的。有几种污渍可以被用于可视化的细胞和结缔组织结构。苏木精和曙红是一种两色色斑,即污迹细胞核蓝色和嗜酸性结构( 即 ,细胞质和细胞外胶原)的红色,粉红色,橙色和各种色调。马洛里的三色是一个三色染色选自苯胺?…

Discussion

这里介绍的手术协议描述的小鼠胎儿无瘢痕愈合首次出版于2006年,由我们的实验室10的切除模式。除了 ​​切除伤人11等建立模型,对小鼠胎儿无瘢痕愈合的切口车型存在,以及12,13。胎儿无瘢痕愈合猴,羊,兔,负鼠,老鼠和调查的报道14-17。然而,小鼠表现为探索胎儿无瘢痕愈合的理想模型,由于其相对较低的按日补助笼的成本和良好的特点的基因组。此外,?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院资助R01 GM087609(以HPL),从英格丽·莱和比尔舒荣誉安东尼舒(以HPL),美国国立卫生研究院资助U01 HL099776(以MTL)的礼物,在Hagey实验室拨款部分支持小儿再生医学和橡树基金会(MTL来和HPL)。 GGW是由斯坦福大学医学院,斯坦福大学医学院科学家培训项目的支持,并NIGMS培训资助GM07365。 MSH是由CIRM临床研究员培训资助TG2-01159支持。 WXH是从萨尔诺夫心血管基金会的资助支持。

Materials

Name of Material/Equipment Company Catalog Number Comments/Description
7-O MONOSOF Suture eSuture SN-1647G
Surgical Forceps Kent Scientific INS650916
Micro-scissors Kent Scientific INS600127
Autoclip 9mm Texas Scientific Instruments 205060
Insulin Syringe Thermo Fisher Scientific 22-272-382
Black Pigment AIMS 242
BD Safety-Lok 3ml Syringe BD Biosciences 309596
Phosphate Buffered Saline Life Technologies 10010-049
OPMI-MD Surgical Microscope Carl Zeiss Surgical Inc
Pregnant Mares Serum (PMS) Millipore 367222
Human Chorionic Gonadotropin (HCG) Sigma-Aldrich CG10
Povidone Iodine Prep Solution Dynarex 1415
Nair (depilatory cream) Church and Dwight Co. 22600267058

References

  1. Larson, B. J., Longaker, M. T., Lorenz, H. P. Scarless fetal wound healing: a basic science review. Plastic and reconstructive surgery. 126, 1172-1180 (2010).
  2. Wilgus, T. A. Regenerative healing in fetal skin: a review of the literature. Ostomy/wound management. 53, 16-31 (2007).
  3. Wulff, B. C., et al. Mast cells contribute to scar formation during fetal wound healing. The Journal of investigative dermatology. 132, 458-465 (2012).
  4. Lorenz, H. P., Adzick, N. S. Scarless skin wound repair in the fetus. The Western journal of medicine. 159, 350-355 (1993).
  5. Longaker, M. T., et al. Wound healing in the fetus. Possible role for inflammatory macrophages and transforming growth factor-beta isoforms. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2, 104-112 (1994).
  6. Longaker, M. T., et al. Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Annals of surgery. 210, 667-672 (1989).
  7. Colombo, J. A., Napp, M., Depaoli, J. R., Puissant, V. Trophic influences of human and rat amniotic fluid on neural tube-derived rat fetal cells. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 11, 347-355 (1993).
  8. Colwell, A. S., Longaker, M. T., Peter Lorenz, H. Identification of differentially regulated genes in fetal wounds during regenerative repair. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 16, 450-459 (2008).
  9. Hu, M. S., et al. Gene expression in fetal murine keratinocytes and fibroblasts. The Journal of surgical research. , (2014).
  10. Colwell, A. S., Krummel, T. M., Longaker, M. T., Lorenz, H. P. An in vivo mouse excisional wound model of scarless healing. Plastic and reconstructive surgery. 117, 2292-2296 (2006).
  11. Wilgus, T. A., et al. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. The American journal of pathology. 165, 753-761 (2004).
  12. Iocono, J. A., Ehrlich, H. P., Keefer, K. A., Krummel, T. M. Hyaluronan induces scarless repair in mouse limb organ culture. Journal of pediatric surgery. 33, 564-567 (1998).
  13. Chopra, V., Blewett, C. J., Krummel, T. M. Transition from fetal to adult repair occurring in mouse forelimbs maintained in organ culture. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 5, 47-51 (1997).
  14. Adzick, N. S., Longaker, M. T. Animal models for the study of fetal tissue repair. The Journal of surgical research. 5, 47-51 (1991).
  15. Block, M. Wound healing in the new-born opossum (Didelphis virginianam). Nature. 187, 340-341 (1960).
  16. Longaker, M. T., Dodson, T. B., Kaban, L. B. A rabbit model for fetal cleft lip repair. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 48, 714-719 (1990).
  17. Longaker, M. T., et al. A model for fetal cleft lip repair in lambs. Plastic and reconstructive surgery. 90, 750-756 (1992).
check_url/fr/52297?article_type=t

Play Video

Citer Cet Article
Walmsley, G. G., Hu, M. S., Hong, W. X., Maan, Z. N., Lorenz, H. P., Longaker, M. T. A Mouse Fetal Skin Model of Scarless Wound Repair. J. Vis. Exp. (95), e52297, doi:10.3791/52297 (2015).

View Video