Summary

Méthodes de caractérisation de la Co-développement de biofilms et Habitat Hétérogénéité

Published: March 11, 2015
doi:

Summary

Biofilms have complex interactions with their surrounding environment. To comprehensively investigate biofilm-environment interactions, we present here a series of methods to create heterogeneous chemical environment for biofilm development, to quantify local flow velocity, and to analyze mass transport in and around biofilm colonies.

Abstract

Les biofilms sont des communautés microbiennes attachée surface qui ont des structures complexes et produisent hétérogénéités spatiales importantes. le développement du biofilm est fortement réglementé par le flux environnante et l'environnement nutritionnel. la croissance du biofilm augmente également l'hétérogénéité du microenvironnement local en générant des champs d'écoulement complexes et des structures de transport de solutés. Pour étudier le développement de l'hétérogénéité dans les biofilms et les interactions entre les biofilms et leur micro-habitat local, nous avons grandi biofilms mono-espèces de Pseudomonas aeruginosa et les biofilms double-espèces de P. aeruginosa et Escherichia coli sous gradients nutritionnels dans une cellule d'écoulement microfluidique. Nous fournissons des protocoles détaillés pour la création de gradients de nutriments dans la cellule d'écoulement et pour la culture et la visualisation de développement du biofilm dans ces conditions. Nous avons également des protocoles actuels pour une série de méthodes optiques de quantifier la répartition spatiale de la structure du biofilm, distri circulerbutions sur les biofilms, et le transport de masse autour et à l'intérieur des colonies de biofilm. Ces méthodes prennent en charge des enquêtes approfondies de la co-développement du biofilm et l'habitat hétérogénéité.

Introduction

Microorganisms attach to surfaces and form biofilms — cell aggregates enclosed in an extracellular-polymer matrix1. Biofilms behave very differently from individual microbial cells, because biofilms have dramatic spatial heterogeneity resulting from a combination of internal solute transport limitations and spatial variations in cellular metabolism2,3. Oxygen and nutrient concentrations drastically decrease at the interface between biofilm and surrounding fluid and get further depleted within in the biofilm2. Spatial variations in biofilm respiration and protein synthesis can also occur as a response to localized oxygen and nutrient availability2.

In aquatic and soil environments, most bacteria dwell in biofilms. Natural biofilms carry out important biogeochemical processes including cycling carbon and nitrogen and reducing metals4,5. Clinically, biofilm formation is responsible for prolonged pulmonary and urinary infections6. Biofilm-associated infections are highly problematic because cells in biofilms have extremely high resistance to antimicrobials compared to their planktonic counterparts6. Because biofilms are important in diverse settings, a substantial amount of research has been focused on understanding the environmental factors that control biofilm activities and the spatial heterogeneity in biofilms and the surrounding microenvironment.

Previous studies have found that biofilm development is strongly regulated by a number of environmental factors: biofilms develop different morphologies under various flow conditions; oxygen and nutrient availability influence biofilm morphology; and hydrodynamic shear stress affects the attachment of planktonic cells to surfaces and the detachment of cells from biofilms7-9. Furthermore, external flow condition influences the delivery of substrates into and within biofilms10. The growth of biofilms also alters surrounding physical and chemical conditions. For example, biofilm growth leads to local depletion of oxygen and nutrients2; biofilms accumulate inorganic and organic compounds from the surrounding environment11; and biofilm clusters divert flow and increase surface friction12,13. Because biofilms interact with their surrounding environment in very complex ways, it is critical to simultaneously obtain information on biofilm properties and environmental conditions, and multi-disciplinary approaches need to be used to comprehensively characterize biofilm-environment interactions.

Here we present a series of integrated methods to characterize spatial patterns in microbial growth within mono-species and dual-species biofilms under an imposed nutritional gradient, and to observe the resulting modification of the local chemical and fluid microenvironment. We first describe the use of a recently developed double-inlet microfluidic flow cell to observe biofilm growth under well-defined chemical gradients. We then demonstrate the use of this microfluidic flow cell to observe the growth of two species of bacteria, Pseudomonas aeruginosa and Escherichia coli, in biofilms under a range of nutritional conditions. We show how in situ visualization of fluorescent tracer propagation into biofilm colonies can be used to quantitatively assess patterns of solute transport in biofilms. Finally, we show how microscale particle tracking velocimetry, performed under confocal microscopy, can be used to obtain local flow field around the growing biofilms.

Protocol

1. Flow Cell Setup and Inoculation NOTE: Use a double-inlet microfluidic flow cell described in Song et al., 201414 to grow biofilms. This flow cell is able to create well-defined smooth chemical gradients. The flow cell design is shown in Figure 1 and flow cell fabrication was previously described in Song et al., 201414. Here we detail our methods by using P. aeruginosa and E. coli to form biofilms, but other species may…

Representative Results

The double-inlet microfluidic flow cell allows observation of biofilm growth under a well-defined chemical gradient formed by mixing of two solutions within the flow chamber. The resulting chemical gradient was formerly observed by dye injection and characterized in detail by Song et al.14. Smooth concentration gradients were formed in the transverse direction, as shown in Figure 1. The concentration profile was steep near the inlet and got relaxed downstream due to diffusion (<strong…

Discussion

We demonstrated a suite of methods to characterize three important biofilm-environment interactions: biofilm response to chemical gradients, effects of biofilm growth on the surrounding flow microenvironment, and biofilm heterogeneity resulting from internal transport limitations.

We first showed the use of a novel microfluidic flow cell to impose a well-defined chemical gradient for biofilm development. To generate a well-defined chemical gradient within the flow cell, it is important to main…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank Matt Parsek at the University of Washington (Seattle, WA) for providing P. aeruginosa and E. coli strains and Roger Nokes at the University of Canterbury (New Zealand) for providing access to Streams software. This work was supported by grant R01AI081983 from the National Institutes of Health, National Institute of Allergy and Infectious Diseases. Confocal imaging was performed at the Northwestern Biological Imaging Facility (BIF).

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Peristaltic Pump Gilson Miniplus 3 Flow cell setup and inoculation
PUMP TUBING 0.50MM OVC, Orange/Yellow Gilson F117934 Flow cell setup and inoculation
Three-way Stopcock w/ Swivel male Luer lock Smiths Medical  MX9311L Flow cell setup and inoculation
Sylgard 184 Solar Cell Encapsulation for Making Solar Panels ML Solar LLC Flow cell setup and inoculation
Pyrex Medium Bottle, 1L, GL45 VWR 16157-191 Flow cell setup and inoculation
C-FLEX Tubing Cole-Parmer 06422-02 Flow cell setup and inoculation
1 mL TB Syringe BD 309659 Flow cell setup and inoculation
Polymer Tubing IDEX 1520G Flow cell setup and inoculation
Sterile Intramedic Luer Stub Adapter Clay Adams 427564 Flow cell setup and inoculation
PrecisionGlide Needle BD 305195 Flow cell setup and inoculation
Spectrophotometer HACH Flow cell setup and inoculation
Syringe filters- sterile (0.2 μm) Fisherbrand 09-719A Flow cell setup and inoculation
MAXQ Shaker Thermo Scientific Flow cell setup and inoculation
Ammonium sulfate Sigma Aldrich A4418 Growth media
Sodium phosphate dibasic anhydrous Sigma Aldrich RES20908-A7 Growth media
Monobasic potassium phosphate Sigma Aldrich P5655 Growth media
Sodium chloride Sigma Aldrich S7653 Growth media
Magnisium chloride Sigma Aldrich M8266 Growth media
Calcium chloride Sigma Aldrich C5670 Growth media
Calcium sulfate dihydrate Sigma Aldrich C3771 Growth media
Iron(II) sulfate heptahydrate Sigma Aldrich 215422 Growth media
Manganese(II) sulfate monohydrate Sigma Aldrich M7634 Growth media
Copper(II) sulfate Sigma Aldrich 451657 Growth media
Zinc sulfate heptahydrate Sigma Aldrich Z0251 Growth media
Cobalt(II) sulfate heptahydrate Sigma Aldrich C6768 Growth media
Sodium molybdate Sigma Aldrich 243655 Growth media
Boric acid Sigma Aldrich B6768 Growth media
Dextrose Sigma Aldrich D9434 Growth media
Luria Bertani Broth Sigma Aldrich L3022 Growth media
TCS SP2 Confocal Microscopy Leica Fluorescent imaging
SYTO 62 Life Technology S11344 Fluorescent imaging
Cy5 GE Healthcare Life Sciences PA15100 Fluorescent imaging
Red Fluorescent (580/605) FluoSphere Life Technology F-8801 Fluorescent imaging
BioSPA Packman Lab Image Processing
ImageJ NIH Image Processing
Volocity PerkinElmer Image Processing
Streams 2.02 University of Cantebury Image Processing

References

  1. Hall-Stoodley, L., Costerton, J. W., Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol. 2 (2), 95-108 (2004).
  2. Stewart, P. S., Franklin, M. J. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 6 (3), 199-210 (2008).
  3. Xu, K. D., Stewart, P. S., Xia, F., Huang, C. T., McFeters, G. A. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microb. 64 (10), 4035-4039 (1998).
  4. Costerton, J. W., et al. Bacterial Biofilms in Nature and Disease. Annu Rev Microbiol. 41, 435-464 (1987).
  5. Battin, T. J., Kaplan, L. A., Newbold, J. D., Hansen, C. M. E. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature. 426 (6965), 439-442 (2003).
  6. Costerton, J. W., Stewart, P. S., Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science. 284 (5418), 1318-1322 (1999).
  7. Stoodley, P., Dodds, I., Boyle, J. D., Lappin-Scott, H. M. Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol. 85, 19S-28S (1999).
  8. Stoodley, P., Lewandowski, Z., Boyle, J. D., Lappin-Scott, H. M. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnol Bioeng. 65 (1), 83-92 (1999).
  9. Wasche, S., Horn, H., Hempel, D. C. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res. 36 (19), 4775-4784 (2002).
  10. Stewart, P. S. Mini-review: Convection around biofilms. Biofouling: The Journal of Bioadhesion and Biofilm Research. 28 (2), 187-198 (2012).
  11. Flemming, H. C. Sorption sites in biofilms. Water Sci Technol. 32 (8), 27-33 (1995).
  12. Debeer, D., Stoodley, P., Lewandowski, Z. Liquid Flow in Heterogeneous Biofilms. Biotechnol Bioeng. 44 (5), 636-641 (1994).
  13. Schultz, M. P., Swain, G. W. The effect of biofilms on turbulent boundary layers. J Fluid Eng-T Asme. 121 (1), 44-51 (1999).
  14. Song, J. S. L., Au, K. H., Huynh, K. T., Packman, A. I. Biofilm Responses to Smooth Flow Fields and Chemical Gradients in Novel Microfluidic Flow Cells. Biotechnol Bioeng. 111 (3), 597-607 (2014).
  15. Shrout, J. D., et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol. 62 (5), 1264-1277 (2006).
  16. Maxworthy, T., Nokes, R. I. Experiments on gravity currents propagating down slopes. Part 1. The release of a fixed volume of heavy fluid from an enclosed lock into an open channel. J Fluid Mech. 584, 433-453 (2007).
  17. Stewart, P. S. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng. 59 (3), 261-272 (1998).
  18. Schramm, A., De Beer, D., Gieseke, A., Amann, R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ Microbiol. 2 (6), 680-686 (2000).
  19. Santegoeds, C. M., Schramm, A., de Beer, D. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation. 9 (3-4), 159-168 (1998).
  20. Debeer, D., Stoodley, P., Roe, F., Lewandowski, Z. Effects of Biofilm Structures on Oxygen Distribution and Mass-Transport. Biotechnol Bioeng. 43 (11), 1131-1138 (1994).
  21. Liu, Y., Tay, J. H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 36 (7), 1653-1665 (2002).
  22. Zhang, W., et al. A Novel Planar Flow Cell for Studies of Biofilm Heterogeneity and Flow-Biofilm Interactions. Biotechnol Bioeng. 108 (11), 2571-2582 (2011).
  23. Tseng, B. S., et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol. 15 (10), 2865-2878 (2013).
  24. Debeer, D., Srinivasan, R., Stewart, P. S. Direct Measurement of Chlorine Penetration into Biofilms during Disinfection. Appl Environ Microb. 60 (12), 4339-4344 (1994).

Play Video

Citer Cet Article
Li, X., Song, J. L., Culotti, A., Zhang, W., Chopp, D. L., Lu, N., Packman, A. I. Methods for Characterizing the Co-development of Biofilm and Habitat Heterogeneity. J. Vis. Exp. (97), e52602, doi:10.3791/52602 (2015).

View Video