Summary

原位胰腺癌小鼠模型的动态对比增强磁共振成像

Published: April 18, 2015
doi:

Summary

The goal of this protocol is to apply dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for orthotopic pancreatic tumor xenografts in mice. DCE-MRI is a non-invasive method to analyze microvasculature in a target tissue, and useful to assess vascular response in a tumor following a novel therapy.

Abstract

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been limitedly used for orthotopic pancreatic tumor xenografts due to severe respiratory motion artifact in the abdominal area. Orthotopic tumor models offer advantages over subcutaneous ones, because those can reflect the primary tumor microenvironment affecting blood supply, neovascularization, and tumor cell invasion. We have recently established a protocol of DCE-MRI of orthotopic pancreatic tumor xenografts in mouse models by securing tumors with an orthogonally bent plastic board to prevent motion transfer from the chest region during imaging. The pressure by this board was localized on the abdominal area, and has not resulted in respiratory difficulty of the animals. This article demonstrates the detailed procedure of orthotopic pancreatic tumor modeling using small animals and DCE-MRI of the tumor xenografts. Quantification method of pharmacokinetic parameters in DCE-MRI is also introduced. The procedure described in this article will assist investigators to apply DCE-MRI for orthotopic gastrointestinal cancer mouse models.

Introduction

该方法的总的目标是要应用动态对比增强磁共振成像(DCE-MRI)对小鼠原位胰腺肿瘤异种移植物。 DCE-MRI是一种非侵入性的方法,通过监测MR对比的变化超过一定时间内注射后,以评估微脉管的目标组织。 DCE-MRI已经被用于诊断恶性肿瘤,并评估肿瘤对各种疗法1-4。定量DCE-MRI已经呈现高重复性5。定量的靶组织的磁共振造影剂的药代动力学参数,在注射造影剂前获得不同的时间点和T1地图获得的所有DCE-MR图像必须配准6。然而,由于在腹部呼吸和蠕动运动,定量的DCE-MRI已经具备了胃肠道肿瘤应用有限。

原位胰腺肿瘤模型已被用于评估胰腺肿瘤反应下的生物治疗和化疗7,8。原位肿瘤模型被认为是优于传统的皮下模型中,由于在原来的肿瘤部位的微环境被反射并由此人肿瘤对治疗的反应,可以更准确地预测。然而,小鼠胰腺位于腹部的左上象限,在小鼠中,以便定量的DCE-MRI的原位胰腺肿瘤异种移植物还未容易地实现。

我们已经建立了小鼠腹部肿瘤中的DCE-MRI的协议通过使用正交弯曲的塑料板,以防止从胸部区域9运动传递定影的肿瘤。通过这款主板所施加的压力是局部的腹部,并没有导致呼吸困难。一种自动化图像配准技术已经被验证为在自由呼吸模式腹部器官的DCE-MRI,但它执行effectivelY仅在目标地区缓慢移动,并定期10。动物的呼吸速率成像期间可变的,在腹部区域,以便物理约束将是必要的,以检索在原位胰腺肿瘤小鼠模型可靠的药物动力学参数。我们已经使用正交弯曲的塑料板DCE-MRI中11-13成功定量在原位胰腺肿瘤异种移植物的MR造影剂的药动学参数。在这里,我们提出了原位胰腺肿瘤模型的详细过程,对移植瘤小鼠和药代动力学参数量化的DCE-MRI。

Protocol

所有的程序批准的机构动物护理和使用委员会在阿拉巴马大学伯明翰分校。 1.原位胰腺肿瘤的老鼠模型在Dulbecco改良的Eagle培养基(DMEM)中培养的标准人胰腺癌肿瘤细胞系在补充有10%胎牛血清。保持所有培养物在37℃下在湿润的气氛中,用5%的CO 2。 使用8-10周龄雌性重症联合免疫缺陷小鼠。放置动物笼子在12小时光照和12小时黑暗周期在RT(21±2℃)和60…

Representative Results

人类胰腺肿瘤细胞在小鼠胰腺创建实体瘤成功生长。 图1显示(A)的正常的胰腺,其中肿瘤细胞溶液被注入,和(B)的照片的代表性小鼠附有是胰腺肿瘤异种移植物原位(MIA PACA -2- )。肿瘤位于腹部的左上腹,旁边的脾脏。它通常需要2 – 4周的肿瘤长到5 – 后细胞植入直径7毫米。 原位胰腺肿瘤异种移植的议案被大幅抑制,尽管运动伪影存在于MR图像有一定幅度?…

Discussion

我们已经介绍了原位胰腺肿瘤模型使用免疫缺陷小鼠,小鼠的DCE-MRI腹部肿瘤,以及其动力学参数量化的具体方法。在原位胰腺肿瘤模型中,必须将针插入胰尾时服用。如果成功的话,将细胞将被转移到胰头创建一个小疱。当施加一个垂直弯曲的塑料板,关键是要确认肿瘤位于下方板的上端。由于胰腺肿瘤附近至该膜片,所述基板也可以是不能够牢固地保持它,特别是当肿瘤大小小于5毫米的直径?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Authors thank Jeffrey Sellers to assist orthotopic pancreatic cancer mouse modeling. This work was supported by Research Initiative Pilot Awards from the Department of Radiology at UAB and NIH grants 2P30CA013148 and P50CA101955.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
DMEM Invitrogen 11965-118
Fetal bovine serum Harlan Laboratories BT-9501
Betadine Purdue products 67618-153-01
5-0 Prolene sutures Ethicon 8720H
9.4T MR scanner Bruker Biospin Corporation BioSpec 94/20 USR
Gadoteridol Bracco Diagnostics Inc NDC 0270-1111-03
Micro-polyethelene tube Strategic Applications, Inc #PE-10-25
30G blunt tip needle Strategic Applications, Inc 89134-194
Monitoring and gating system SA instruments, Inc Model 1030 This is an MR compatiable system to measure resiratory rating and body temperature of small animals at the same time.
Syringe pump New Era Pump Systems, Inc. NE-1600

References

  1. Ergul, N., et al. Assessment of multifocality and axillary nodal involvement in early-stage breast cancer patients using 18F-FDG PET/CT compared to contrast-enhanced and diffusion-weighted magnetic resonance imaging and sentinel node biopsy. Acta Radiol. , (2014).
  2. Park, J. J., et al. Assessment of early response to concurrent chemoradiotherapy in cervical cancer: value of diffusion-weighted and dynamic contrast-enhanced MR imaging. Magn Reson Imaging. , (2014).
  3. Nguyen, H. T., et al. Prediction of chemotherapeutic response in bladder cancer using K-means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters. J Magn Reson Imaging. 10, (2014).
  4. Teo, Q. Q., Thng, C. H., Koh, T. S., Ng, Q. S. Dynamic Contrast-enhanced Magnetic Resonance Imaging: Applications in Oncology. Clin Oncol (R Coll Radiol). , (2014).
  5. Zhang, X., Pagel, M. D., Baker, A. F., Gillies, R. J. Reproducibility of magnetic resonance perfusion imaging. PLoS One. 9 (2), e89797 (2014).
  6. Kim, H., et al. Pancreatic adenocarcinoma: a pilot study of quantitative perfusion and diffusion-weighted breath-hold magnetic resonance imaging. Abdominal imaging. , (2014).
  7. Derosier, L. C., et al. Combination Treatment with TRA-8 Anti Death Receptor 5 Antibody and CPT-11 Induces Tumor Regression in an Orthotopic Model of Pancreatic Cancer. Clin Cancer Res. 13 (18), 5535s-5543s (2007).
  8. Derosier, L. C., et al. TRA-8 anti-DR5 monoclonal antibody and gemcitabine induce apoptosis and inhibit radiologically validated orthotopic pancreatic tumor growth. Mol Cancer Ther. 6 (12), 3198-3207 (2007).
  9. Kim, H., et al. Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res. 68 (20), 8369-8376 (2008).
  10. Klein, S., Staring, M., Murphy, K., Viergever, M. A., Pluim, J. P. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 29 (1), 196-205 (2010).
  11. Kim, H., et al. Early therapy evaluation of combined cetuximab and irinotecan in orthotopic pancreatic tumor xenografts by dynamic contrast-enhanced magnetic resonance imaging. Mol Imaging. 10 (3), 153-167 (2011).
  12. Kim, H., et al. Antagonistic effects of anti-EMMPRIN antibody when combined with chemotherapy against hypovascular pancreatic cancers. M Mol Imaging Biol. 16 (1), 85-94 (2014).
  13. Kim, H., et al. Dual combination therapy targeting DR5 and EMMPRIN in pancreatic adenocarcinoma. Mol Cancer Ther. 11 (2), 405-415 (2012).
  14. Moyher, S. E., Vigneron, D. B., Nelson, S. J. Surface coil MR imaging of the human brain with an analytic reception profile correction. J Magn Reson Imaging. 5 (2), 139-144 (1995).
  15. Voigt, T., Nehrke, K., Doessel, O., Katscher, U. T1 corrected B1 mapping using multi-TR gradient echo sequences. Magn Reson Med. 64 (3), 725-733 (2010).
  16. Liu, H., Liu, Y., Zhao, Z., Zhang, L., Qiu, T. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI. Medical physics. 41 (8), 082303 (2014).
  17. Sarkar, S., Das, S. Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy–a differential evolution approach. IEEE Trans Image Process. 22 (12), 4788-4797 (2013).
  18. Yankeelov, T. E., et al. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging. 23 (4), 519-529 (2005).
  19. Cardenas-Rodriguez, J., Howison, C. M., Pagel, M. D. A linear algorithm of the reference region model for DCE-MRI is robust and relaxes requirements for temporal resolution. Magn Reson Imaging. 31 (4), 497-507 (2013).
  20. Tofts, P. S., et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 10 (3), 223-232 (1999).
  21. Yankeelov, T. E., et al. Comparison of a reference region model with direct measurement of an AIF in the analysis of DCE-MRI data. Magn Reson Med. 57 (2), 353-361 (2007).
  22. Cao, R. Y., Amand, T., Ford, M. D., Piomelli, U., Funk, C. D. The Murine Angiotensin II-Induced Abdominal Aortic Aneurysm Model: Rupture Risk and Inflammatory Progression Patterns. Front Pharmacol. 1 (9), (2010).
  23. Parker, G. J., et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med. 56 (5), 993-1000 (2006).
  24. Tseng, W., Leong, X., Engleman, E. Orthotopic mouse model of colorectal cancer. J Vis Exp. (10), 484 (2007).
  25. Bhullar, J. S., et al. A true orthotopic gastric cancer murine model using electrocoagulation. J Am Coll Surg. 217 (1), 64-70 (2013).
check_url/fr/52641?article_type=t

Play Video

Citer Cet Article
Kim, H., Samuel, S., Totenhagen, J. W., Warren, M., Sellers, J. C., Buchsbaum, D. J. Dynamic Contrast Enhanced Magnetic Resonance Imaging of an Orthotopic Pancreatic Cancer Mouse Model. J. Vis. Exp. (98), e52641, doi:10.3791/52641 (2015).

View Video