Summary

Progettato Vascolarizzato muscolare Flap

Published: January 11, 2016
doi:

Summary

To date, thick tissue defects are typically reconstructed by applying autologous tissue flaps or engineered tissues. In this protocol, we present a new method for engineering vascularized tissue flap bearing an autologous pedicle, to serve as a substitute to autologous flaps.

Abstract

One of the main factors limiting the thickness of a tissue construct and its consequential viability and applicability in vivo, is the control of oxygen supply to the cell microenvironment, as passive diffusion is limited to a very thin layer. Although various materials have been described to restore the integrity of full-thickness defects of the abdominal wall, no material has yet proved to be optimal, due to low graft vascularization, tissue rejection, infection, or inadequate mechanical properties. This protocol describes a means of engineering a fully vascularized flap, with a thickness relevant for muscle tissue reconstruction. Cell-embedded poly L-lactic acid/poly lactic-co-glycolic acid constructs are implanted around the mouse femoral artery and vein and maintained in vivo for a period of one or two weeks. The vascularized graft is then transferred as a flap towards a full thickness defect made in the abdomen. This technique replaces the need for autologous tissue sacrifications and may enable the use of in vitro engineered vascularized flaps in many surgical applications.

Introduction

Difetti della parete addominale spesso sorgono a seguito di traumi gravi, il trattamento del cancro, le ustioni e la rimozione della rete infetti. Questi difetti spesso comportano una significativa perdita di tessuto, che richiedono procedure chirurgiche complesse e la presentazione di una grande sfida per i chirurghi plastici di ricostruzione 1-4. Ricercatori di ingegneria dei tessuti alla ricerca di nuove fonti per i tessuti artificiali hanno esplorato diversi materiali, fonti di cellule e fattori di crescita. Restauri positivo di vari tessuti, come trachea 5,6, vescica 7, cornea 8, 9 e osso pelle 10, per impiantazione di tessuti ingegnerizzati sono stati segnalati in precedenza. Tuttavia, la fabbricazione di uno spesso ingegneria tessutale vascolarizzato, in particolare per la ricostruzione di grandi difetti, rimane una sfida significativa in ingegneria dei tessuti.

Uno dei principali fattori limitanti lo spessore di un costrutto tessuto vitale è il controllo dell'alimentazione di ossigeno ad suoi svantaggicellule tituent. Quando basandosi sulla diffusione, costruire spessore è limitato a quello di uno strato molto sottile. La distanza massima tra ossigeno e nutrienti capillari fornitura in vivo è di circa 200 micron, che è correlato con il limite diffusione dell'ossigeno 11,12. Vascolarizzazione insufficiente può provocare ischemia tissutale e aumentare al riassorbimento del tessuto o necrosi 13.

Inoltre, il materiale ideale utilizzato per la ricostruzione del tessuto deve essere biocompatibile e non immunogenica. Deve anche essere in grado di promuovere una maggiore integrazione di cellule ospiti con il biomateriale, e mantenendo l'integrità strutturale. Vari biologici 14-16 e sintetiche 1,17,18 matrici sono stati precedentemente esplorati per la ricostruzione dei tessuti, ma il loro uso rimane limitato a causa della mancanza di afflusso di sangue efficace, infezioni o la forza del tessuto insufficiente.

In questo studio, un biocompatibile, cell-embimpalcatura edded composto da Food and Drug Administration (FDA) l'acido L-lattico poli -approvato (PLLA) / poli acido lattico-co-glicolico (PLGA), è stato impiantato intorno all'arteria femorale e vena (AV) le navi di un topo nudo e separato dal tessuto circostante, assicurando vascolarizzazione solo dai vasi AV. Una settimana dopo l'impianto, l'innesto è stato vitale, denso e ben vascolarizzato. Questo tessuto vascolarizzato spessore con vasi AV, è stato poi trasferito come lembo peduncolato un difetto a tutto spessore addominale nel mouse stesso. Una settimana dopo il trasferimento, il lembo era praticabile, vascolarizzato e ben integrato con il tessuto circostante, tenendo forza sufficiente a sostenere visceri addominali. Così, la spessa, lembo di tessuto vascolarizzato ingegneria, recanti un peduncolo autologo, presenta un nuovo metodo per la riparazione di difetti della parete addominale a tutto spessore.

Protocol

Tutti gli studi sugli animali sono stati approvati dal Comitato delle Etico di esperimenti su animali del Technion. Per questa procedura, topi nudi atimici sono stati usati per evitare il rigetto immunologico. Se si utilizza un altro tipo di mouse, i topi dovrebbero essere rasata prima della procedura chirurgica e la somministrazione di ciclosporina (o un altro sostituto anti-rigetto) è raccomandato. 1. Ponteggio Preparazione e Cell Embedding Preparare ponteggi composto da 1: 1 m…

Representative Results

Vascolarizzazione del trapianto e la perfusione in vivo Gli innesti sono stati impiantati una o due settimane prima del loro trasferimento come lembi assiali. A uno e due settimane dopo l'impianto, l'osservazione al lordo della zona dell'innesto rivelato innesti di tessuto vitali e vascolarizzate. Questi innesti dimostrato di essere altamente vascolarizzati, come determinato mediante immunocolorazione CD31 positivo (Figura 1A) e altamente perfuso, come e…

Discussion

I progressi in ingegneria dei tessuti sono stati raggiunti con una crescente domanda per i tessuti sostitutivi per la ricostruzione dei vari tipi di tessuto. Una varietà di sintesi 1,17,18 e biologici 14-16 materiali, nonché i metodi di fabbricazione sono stati valutati per la loro capacità di far fronte a queste esigenze. Tuttavia, nonostante i progressi nella cura clinica e in ingegneria dei tessuti, il restauro di difetti della parete addominale a tutto spessore rimane una sfida. Un tessuto a…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This research was supported by the FP7 European Research Council Grant 281501, ENGVASC.

Materials

small fine straight scissors Fine Science Tools (FST) 14090-09
spring scissors Fine Science Tools (FST) 15003-08
straight forceps with fine tip Fine Science Tools (FST) 11251-20
serrated forceps  Fine Science Tools (FST) 11050-10
needle holder Fine Science Tools (FST) 12500-12
Small vessel cauterizer  Fine Science Tools (FST) 18000-00
Duratears Alcon 5686
Sedaxylan Euravet DJ03
Clorketam 1000 Vetoquinol 4A0726B
Buprenorphine vetmarket B15100
4-0 silk sutures Assut sutures 647
6-0 polypropylene sutures Assut sutures 9351F
8-0 silk sutures Assut sutures 684568
Insulin syringe (6mm needle) BD 324911
Vevo 2100 high-resolution ultrasound system VisualSonics inc.
MS250 non-linear transducer VisualSonics inc.
Micromarker non-targeted contrast agent VisualSonics inc. VS-11694
tail vein catheter VisualSonics inc. VS-11912
Vevo 2100 software VisualSonics inc.
fluorescein isothiocyanate-conjugated dextran Sigma FD500S
Matlab Mathworks, MA, USA
Kimwipes Kimtech 34120
antigen unmasking solution Vector laboratories H-3300
anti-CD31 antibody Abcam  ab28364
biotinylated goat anti-rabbit (secondary) antibody Vector laboratories BA-1000
streptavidin-peroxidase Jackson  016-030-084
Mayer's hamatoxylin solution Sigma-Aldrich MHS-16
aminoethylcarbazole (AEC) substrate kit Life technologies, Invitrogen  00-2007
Vectamount Vector laboratories H-5501

References

  1. Engelsman, A. F., van der Mei, H. C., Ploeg, R. J., Busscher, H. J. The phenomenon of infection with abdominal wall reconstruction. Biomaterials. 28 (14), 2314-2327 (2007).
  2. De Coppi, P., et al. Myoblast-acellular skeletal muscle matrix constructs guarantee a long-term repair of experimental full-thickness abdominal wall defects. Tissue Eng. 12 (7), 1929-1936 (2006).
  3. Shi, C., et al. Regeneration of full-thickness abdominal wall defects in rats using collagen scaffolds loaded with collagen-binding basic fibroblast growth factor. Biomaterials. 32 (3), 753-759 (2011).
  4. Yezhelyev, M. V., Deigni, O., Losken, A. Management of full-thickness abdominal wall defects following tumor resection. Ann Plast Surg. 69 (2), 186-191 (2012).
  5. Macchiarini, P., Walles, T., Biancosino, C., Mertsching, H. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg. 128 (4), 638-641 (2004).
  6. Macchiarini, P., et al. Clinical transplantation of a tissue-engineered airway. Lancet. 372 (9665), 2023-2030 (2008).
  7. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 367 (9518), 1241-1246 (2006).
  8. Nishida, K., et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 351 (12), 1187-1196 (2004).
  9. Petite, H., et al. Tissue-engineered bone regeneration. Nat Biotechnol. 18 (9), 959-963 (2000).
  10. Banta, M. N., Kirsner, R. S. Modulating diseased skin with tissue engineering: actinic purpura treated with Apligraf. Dermatol Surg. 28 (12), 1103-1106 (2002).
  11. Vunjak-Novakovic, G., et al. Challenges in cardiac tissue engineering. Tissue engineering. Part B, Reviews. 16 (2), 169-187 (2010).
  12. Novosel, E. C., Kleinhans, C., Kluger, P. J. Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews. 63 (4-5), 300-311 (2011).
  13. Lesman, A., Gepstein, L., Levenberg, S. Vascularization shaping the heart. Ann N Y Acad Sci. 1188, 46-51 (2010).
  14. Patton Jr, H., Berry, S., Kralovich, K. A. Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. The Am J of Surg. 193 (3), 360-363 (2007).
  15. Menon, N. G., et al. Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann Plast Surg. 50 (5), 523-527 (2003).
  16. Buinewicz, B., Rosen, B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg. 52 (2), 188-194 (2004).
  17. Bringman, S., et al. Hernia repair: the search for ideal meshes. Hernia. 14 (1), 81-87 (2010).
  18. Meintjes, J., Yan, S., Zhou, L., Zheng, S., Zheng, M. Synthetic biological and composite scaffolds for abdominal wall reconstruction. Exp rev of med dev. 8 (2), 275-288 (2011).
  19. Cheng, G., et al. Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood. 118 (17), 4740-4749 (2011).
  20. Shandalov, Y., et al. An engineered muscle flap for reconstruction of large soft tissue defects. PNAS of the USA. 111 (16), 6010-6015 (2014).
  21. Zhang, T. Y., Suen, C. Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM. 27 (3), 236-239 (1984).
  22. Luna, L. G., Luna, L. G. . Manual of Histo Stain Meth ; of the Arm Forcs Inst of Path. , (1968).
  23. Choi, J. H., et al. Adipose tissue engineering for soft tissue regeneration. Tissue engineering. Part B, Reviews. 16 (4), 413-426 (2010).
  24. Bellows, C. F., Alder, A., Helton, W. S. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Exp rev of med dev. 3 (5), 657-675 (2006).
  25. Caspi, O., et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 100 (2), 263-272 (2007).
  26. Kaufman-Francis, K., Koffler, J., Weinberg, N., Dor, Y., Levenberg, S. Engineered vascular beds provide key signals to pancreatic hormone-producing cells. PloS one. 7 (7), e40741 (2012).
  27. Kaully, T., Kaufman-Francis, K., Lesman, A., Levenberg, S. Vascularization–the conduit to viable engineered tissues. Tiss eng. Part B, Reviews. 15 (2), 159-169 (2009).
  28. Koffler, J., et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. PNAS of the USA. 108 (36), 14789-14794 (2011).
  29. Lesman, A., et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tisseng. Part A. 16 (1), 115-125 (2010).
  30. Levenberg, S., et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 23 (7), 879-884 (2005).
  31. Bearzi, C., et al. PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell death & disease. 5, e1053 (2014).
  32. Zhang, M., et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J : official publication of the .Fed Am Soc Exp Biol. 21 (12), 3197-3207 (2007).
  33. Dvir, T., et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. PNAS. 106 (35), 14990-14995 (2009).
  34. Marsano, A., et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials. 34 (2), 393-401 (2013).
  35. Rufaihah, A. J., et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials. 34 (33), 8195-8202 (2013).
  36. Nillesen, S. T. M., et al. Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF. J of Contr Release. 116 (2), e88-e90 (2006).
  37. Sekine, H., et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 4, 1399 (2013).
  38. Tee, R., et al. Transplantation of engineered cardiac muscle flaps in syngeneic rats. Tiss eng. Part A. (19-20), 1992-1999 (2012).
  39. Morritt, A. N., et al. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation. 115 (3), 353-360 (2007).

Play Video

Citer Cet Article
Egozi, D., Shandalov, Y., Freiman, A., Rosenfeld, D., Ben-Shimol, D., Levenberg, S. Engineered Vascularized Muscle Flap. J. Vis. Exp. (107), e52984, doi:10.3791/52984 (2016).

View Video