Summary

在条件影响社会空间<em>果蝇</em

Published: November 05, 2015
doi:

Summary

The effect of genes and environment on social space of Drosophila melanogaster can be quantified through a powerful but straightforward analytical paradigm. We show here different factors that can affect this social space, and thus need to be taken into consideration when designing experiments in this paradigm.

Abstract

此处所描述的社会空间测定可用于定量的果蝇melanogasteř社会互动-或其它小昆虫-以直接的方式。如我们以前表明图1,在一个二维室,我们首先迫使苍蝇形成紧密基,随后使它们采取彼此其优选距离。之后苍蝇纷纷落户,我们测量到最近的邻居(或社会空间)的距离,处理静态图片,免费在线软件(ImageJ的)。到最近的邻居的距离的分析,使研究人员能够确定遗传和环境因素对社会互动的效果,同时控制了潜在的混杂因素。不同的因素,例如爬坡能力,天,性别的时间,和苍蝇的数目,可以修改蝇社会间距。因此,我们提出了一系列的实验控制,以减轻这些混杂影响。此法可用于至少两个目的。首先,研究人员能够确定自己喜欢的环境转变(如隔离,温度,压力或毒素)会影响社会的间距1,2。其次,研究人员可以剖析社会行为1,3这种基本形式的遗传和神经基础。具体而言,我们用它作为诊断工具,研究认为参与在其他生物,如候选基因孤独症在人中4社会行为直系同源基因的作用。

Introduction

社会互动是至关重要的一个组内的整体正常发展的个人和健康,并能在众多的品种可以观察到,从人类( 智人 ),以简单的有机体,例如果蝇( 果蝇 )5,6。单个果蝇或人共享共同方式处理过程中这些互动的感觉信息,它是否是:听觉,视觉,嗅觉,触觉,味觉或。我们和其他人推测可能有是一种潜在的共享neurocircuitry底层行为反应社会互动和神经元细胞和参与可能是进化保守的基因7。一旦初始相互作用已经发生,相互作用的个人之间的社会空间要么增加(社交回避8)或减小(组形成/聚合5)。更复杂的相互作用,如侵略或求爱,就可以成行。

<p c姑娘="“jove_content”">无论是复杂的工具和方法,也没有大的投资时间和培训都需要量化的社会行为,这种简单的形式,使其成为一个强大的分析工具。在这里,我们说明一个简单的协议,量化间飞行距离或社会空间,以评估社会互动果蝇的稳定基团,如在以下的研究1-4,9使用。社会空间是指一种苍蝇和其最接近的邻居10之间的距离的量度。社会空间是D的一个特定人群一致当实验条件将被保留(平均约1-2个体的长度),并且改变相对于所述蝇社会经验,如果个体已经被保持在隔离1增加果蝇 。正确的目标是要维持正常的社会距离,而不是传统的添味剂或CVA感知1。因此,衡量社会空间可作为诊断工具来分析社会交往和量化D.社会行为1,我们在这里描述的细节如何执行此量化,并共同实验变量的影响程度如何这种行为。

我们表明,在该试验进行腔室,以及蝇的数目的取向 – 在一定程度上 – 做影响社会的空间。这是以前表明腔的几何形状影响的苍蝇11,12自发探索性运动,这种现象可能会最终影响他们决定定居。然而,只要在蝇密度(飞/厘米2)和腔室方向保持相同,苍蝇的社会空间也保持不变。该测定的鲁棒性的事实,使用不同的腔室的尺寸,形状独立实验室,和取向可以复制由WH的突变体所显示的结果示出ITE基因(影响眼部色素沉着),这是一个增加社会空间(1个垂直三角形或横向循环,用气流在3水平平方)。

我们的结果还表明,保持在该社会空间实验进行时间是至关重要的结果的一致性,因为我们表明,男性,但不是雌性,进一步分开,在晚上。然而,看到白天和晚上的时间之间的差异不是由于苍蝇的活动不同,和大家讨论的论点,表示不与社会空间相关的活动水平。

最后,有遗传基础的社会空间的测定,由突变体所指示已经描述的1,3,和苍蝇,我们在这里介绍的各种近交系和捕获的野生株之间的差异。

因此,这个实验使一个很好的工具˚F或研究的遗传效应以及环境因素。

Protocol

1.设备和试剂创造了内部(材料为他人见列表) 制备果蝇冷麻醉装置如前所述8。 准备一个飞吸气如前所述13。 准备社会空间室和持有人。 命令或使玻璃板和丙烯酸垫片,以创造社会空间室。每个社会空间室由两个方形玻璃板(17.6厘米×17.6厘米,厚度为0.3厘米),两个直角三角形丙烯酸间隔物(16.5厘米,8.9厘米的碱基的高度,厚度为0.3厘米),…

Representative Results

社会空间室可以作为一种工具,以量化果蝇的社会行为。丙烯酸垫片和玻璃板被夹在一起以形成内三角竞技场,提供了一个在其中苍蝇能形成稳定的基团没有许多潜在的混杂线索的存在二维区域。当苍蝇被转移到垂直领域,它们是由被窃听下来吓了一跳,他们通过逃逸行为作出回应:负趋地。他们爬到直立的三角形的顶点,强行纳入一个紧密的组,然后提供时间,以进一步将形成彼此,并?…

Discussion

在这个协议中,对社会空间的量化的详细过程进行了说明。一些关键步骤,以确保实验成功的是:1)清理和设置设备,以保持自己的油脂和香料关闭设备的内室,2)确保苍蝇被收集之前至少有一天,当一直使用的手套实验,以减少冷麻醉的任何潜在影响,3)在实验前2小​​时,提供一种含有新鲜食物,以确保苍蝇不饿死,并已清洁自己新小瓶中,4)在这些2小时,让苍蝇使其恢复到其新的环境?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors want to thank Dr. Tadmiri Venkatesh for his encouragement to prepare this manuscript, Dova Brenman and Selwyn Chui for their constructive comments, Elyssa Burg and Wayne Rasband for designing the macro in ImageJ for all interfly distances and for nearest neighbor distances. The authors also want to thank the reviewers for their constructive comments.

A.A.A, M.C.C. and A.F.S were responsible for research design; S.N.J., A.A.A, M.N., Z.R., and A.J.M. performed the experiments. A.A.A, M.N., A.J.M. and M.C.C and A.F.S. analyzed the data; A.R.M. and A.F.S. wrote the manuscript.

This work was supported by PSC-CUNY research awards, jointly funded by The Professional Staff Congress and The City University of New York to A.F.S.; by internal funding from Western University to A.F.S.; by a Mathematics, Biology, Chemistry, and Geology majors scholarship for teachers-in-training and by a Louis Stokes Alliance for Minority Participation scholarship to A.A.A.

Materials

Stereo Zoom Microscope  Nikon   SMZ-645 Any other standard scope for fly handling would work
Small paint brushes  for pushing flies
Jazz-mix Fisher 33545 any other standard drosophila food would work
Mini-Alarm Timer/Stopwatch
 Sharpie pens
Adhesive Tape
Medium size binder clips Staples to hold the chambers together: 1-1/4" (32mm) medium clips with 5/8" capacity
small SupportStands Carolina  707161 to hold the chambers in a vertical orientation
Buret clamps Carolina 707362
Digital Camera Nikon  Coolpix S8000  to take the still pictures
small ruler to be able to scale the picture
trifold board and white bench cover to provide a white background, and a homogeneous light.
pounding pad any mouse pad works.
Prism 6 GraphPad Software Inc. Prism 6 for Mac OS X Any statistical analysis software with t-test, one-way and two ANOVA would work

References

  1. Simon, A. F., et al. A simple assay to study social behavior in Drosophila.: measurement of social space within a group. Genes Brain Behav. 11, 243-252 (2012).
  2. Kaur, K., Simon, A. F., Chauhan, V., Chauhan, A. Effect of bisphenol A on the behavior of Drosophila melanogaster. – Potential use of Drosophila as a model in the study of neurodevelopmental disorders. Behavioural Brain Research. , (2015).
  3. Burg, E. D., Langan, S. T., Nash, H. A. Drosophila social clustering is disrupted by anesthetics and in narrow abdomen ion channel mutants. Genes Brain Behav. 12, 338-347 (2013).
  4. Wise, A., et al. The autism candidate gene Neurobeachin (Rugose) mutants in Drosophila exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns. J Neurosci. , 1-9 (2015).
  5. Parrish, J. K., Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science. 284, 99-101 (1999).
  6. Sokolowski, M. B. Social interactions in ‘‘simple’’ model systems. Neuron. 65, 780-794 (2010).
  7. Rittschof, C. C., Robinson, G. E. Genomics: moving behavioural ecology beyond the phenotypic gambit. Animal Behaviour. 92, 263-270 (2014).
  8. Fernandez, R. W., et al. Straightforward assay for quantification of social avoidance in Drosophila melanogaster. JoVE. (94), e52011 (2014).
  9. Hahn, N., et al. Monogenic heritable autism gene neuroligin impacts Drosophila. social behaviour. Behav Brain Res. 252, 450-457 (2013).
  10. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A. Mutual interactions, potentials, and individual distance in a social aggregation. J Math Biol. 47, 353-389 (2003).
  11. Liu, L., Davis, R. L., Roman, G. Exploratory activity in Drosophila requires the kurtz nonvisual arrestin. Génétique. 175, 1197-1212 (2007).
  12. Soibam, B., et al. Open-field arena boundary is a primary object of exploration for Drosophila. Brain Behav. 2, 97-108 (2012).
  13. Ejima, A., Griffith, L. C. Ch. 30. Drosophila Neurobiology – A laboratory Manual., Ch. , 475-481 (2010).
  14. Benzer, S. Behavioral mutants of Drosophila melanogaster. isolated by countercurrent distribution. PNAS. 58, 1112-1119 (1967).
  15. Connolly, J. B., Tully, T., Roberts, D. B. Drosophila: A practical approach. 1, 265-317 (1998).
  16. Simon, A. F., Shih, C., Mack, A., Benzer, S. Steroid control of longevity in Drosophila melanogaster. Science. 299, 1407-1410 (2003).
  17. Rasband, W. S. . ImageJ. , (1997).
  18. Simon, A. F., et al. Drosophila, vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin. Génétique. 181, 525-541 (2009).
  19. Barone, M. C., Bohmann, D. Assessing neurodegenerative phenotypes in Drosophila .dopaminergic neurons by climbing assays and whole brain immunostaining. JoVE. (74), e50339 (2013).
  20. Ali, Y. O., Escala, W., Ruan, K., Zhai, R. G. Assaying locomotor, learning, and memory deficits in Drosophila. models of neurodegeneration. JoVE. , e2504 (2011).
  21. Gargano, J. W., Martin, I., Bhandari, P., Grotewiel, M. S. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol. 40, 386-395 (2005).
  22. Simon, A. F., Liang, D. T., Krantz, D. E. Differential decline in behavioral performance of Drosophila melanogaster. with age. Mech Ageing Dev. 127, 647-650 (2006).
  23. Khalil, S., Jacobson, E., Chambers, M. C., Lazzaro, B. P. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster. JoVE. , (2015).
  24. Fernandez, R. W., Akinleye, A. A., Nurilov, M., Rouzyi, Z., Simon, A. F. . , (2013).
  25. Suh, G. S. B., et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature. 431, 854-859 (2004).
  26. Helfrich-Förster, C. Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster.–Sex-specific differences suggest a different quality of activity. J. Biol. Rhythms. 15, 135-154 (2000).
  27. Fujii, S., Krishnan, P., Hardin, P. E., Amrein, H. Nocturnal male sex drive in Drosophila. Curr Biol. 17, 244-251 (2007).
  28. Pellegrino, A. C., et al. Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes. PLoS One. 8, e75004 (2013).
check_url/fr/53242?article_type=t

Play Video

Citer Cet Article
McNeil, A. R., Jolley, S. N., Akinleye, A. A., Nurilov, M., Rouzyi, Z., Milunovich, A. J., Chambers, M. C., Simon, A. F. Conditions Affecting Social Space in Drosophila melanogaster. J. Vis. Exp. (105), e53242, doi:10.3791/53242 (2015).

View Video