Summary

低温碳纳米管垂直互连的制作兼容半导体技术

Published: December 07, 2015
doi:

Summary

A method for the growth of low temperature vertically-aligned carbon nanotubes, and the subsequent fabrication of vertical interconnect electrical test structures using semiconductor fabrication is presented.

Abstract

We demonstrate a method for the low temperature growth (350 °C) of vertically-aligned carbon nanotubes (CNT) bundles on electrically conductive thin-films. Due to the low growth temperature, the process allows integration with modern low-κ dielectrics and some flexible substrates. The process is compatible with standard semiconductor fabrication, and a method for the fabrication of electrical 4-point probe test structures for vertical interconnect test structures is presented. Using scanning electron microscopy the morphology of the CNT bundles is investigated, which demonstrates vertical alignment of the CNT and can be used to tune the CNT growth time. With Raman spectroscopy the crystallinity of the CNT is investigated. It was found that the CNT have many defects, due to the low growth temperature. The electrical current-voltage measurements of the test vertical interconnects displays a linear response, indicating good ohmic contact was achieved between the CNT bundle and the top and bottom metal electrodes. The obtained resistivities of the CNT bundle are among the average values in the literature, while a record-low CNT growth temperature was used.

Introduction

铜和钨,这是目前用于国家的最先进的非常大规模集成电路(VLSI)技术的互连金属,正在接近的可靠性和电导率1项自己的体能极限。而向下缩放晶体管通常可以提高它们的性能,但实际上增加了电阻和互连的电流密度。这导致互连支配在延迟和功耗2方面的集成电路(IC)的性能。

碳纳米管(CNT)被建议作为替代的Cu和W的金属化,特别是对垂直互连(通孔),为的CNT可以很容易地被生长垂直3。碳纳米管已被证明具有优良的电可靠性,允许高达1000倍更高的电流密度比铜4。此外,CNT不会从表面和晶界散射受到影响,这是增加第r铜esistivity在纳米尺度5。最后,碳纳米管已经被证明是优良的热导体 6,其中所用的热管理在VLSI芯片帮助。

对于碳纳米管在VLSI技术成功的集成是很重要的,对于碳纳米管的生长过程是用半导体制造兼容。这要求使用的材料和这被认为是兼容和可扩展的,以大规模的制造设备的CNT(<400℃)的低温生长。虽然CNT测试过孔许多实例已被证明在文献中7,8,9,10,11,12,13,14,大多数这些使用铁作为催化剂,它被认为是在集成电路中的污染物的制造15。此外,在许多这些作品中使用的生长温度高于400℃的上限要高得多。优选的CNT甚至应种植在350℃以下,为了让拥有现代化的低κ电介质或灵活的集成基材。

在这里,我们提出了一个可扩展的方法生长碳纳米管在温度低至350℃下使用钴作为催化剂 16。该方法是用于制造不同电结构由垂直对准的CNT的集成电路,从互连和电极,以超级电容器和场致发射装置的兴趣。钴催化剂金属通常用在集成电路制造为硅化物的17的制造中,而氮化钛是一种经常用于阻挡材料7。此外,我们证明了制造CNT的测试孔,而只能使用从标准的半导体制造技术的过程。由此,CNT测试过孔被制造,检查通过扫描电子显微镜(SEM)和拉曼光谱,并且电特征。

Protocol

注意:使用前请咨询所有相关的材料安全数据表(MSDS)。几个在该制造工艺中使用的化学品是剧毒和致癌性。相比,他们的大部分对手纳米材料可能有额外的危险。用设备,化学品或纳米材料工作时,包括利用工程控制(通风柜)和个人防护装备(防护眼镜,手套,无尘服)的请使用一切适当的安全措施。 1.对准标记定义为光刻开始与单面抛光的工业级硅(100)晶片…

Representative Results

在这项工作中所用的测量结构的设计可以在图1中找到。通过采用这样的结构的碳纳米管束电阻和金属碳纳米管接触电阻的测量可以精确地确定,因为探针和导线电阻被规避。束的电阻为所述CNT束的质量和密度的测量。为了确定不同长度的接触电阻束应测量。 碳纳米管的典型SEM图像,在350℃生长用于从金属化之前的顶部取在45°倾斜60分钟,</stron…

Discussion

图1显示制造在这项工作中的结构的示意图,并且其被用于4点探针测量。作为电位通过探针携带没有电流测量,准确的电位降(Vħ-V L),在中央CNT束及其触点的金属可以被测量。更大直径的CNT束被用于接触从接触垫的底TiN层,以减少用于当前迫使探头的总电阻并最大化在中央CNT束中的电势降。

从图2可以看出,在CNT被成功地生…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Part of the work has been performed in the project JEMSiP_3D, which is funded by the Public Authorities in France, Germany, Hungary, The Netherlands, Norway and Sweden, as well as by the ENIAC Joint Undertaking. The authors would like to thank the Dimes Technology Centre staff for processing support.

Materials

Materials Company Catalog Number Comments/Description
Si (100) wafer 4" International Wafer Service Resisitivity: 2-5 mΩ-cm, thickness: 525 µm 
Ti-sputtertarget (99.995 % purity) Praxair
Al (1% Si)-sputtertarget (99.999 % purity) Praxair
Co (99.95 % purity) Kurt J. Lesker
Chemicals Company Catalog Number Comments/Description
SPR3012 positive photoresist Dow Electronic Materials
MF-322 developer Dow Electronic Materials
HNO3 (99.9 %) KMG Ultra Pure Chemicals
HNO3 (69.5%) KMG Ultra Pure Chemicals
HF 0.55% Honeywell
Tetrahydrofuran JT Baker
Acetone Sigma-Aldrich
ECI3027 positive photoresist AZ
Tetraethyl orthosilicate (TEOS) Praxair
Gasses Company Catalog Number Comments/Description
N2 (99.9990%) Praxair
O2 (99.9999%) Praxair
CF4 (99.9970%) Praxair
CL2 (99.9900%) Praxair
HBr (99.9950%) Praxair
Ar (99.9990%) Praxair
C2F6 (99.9990%) Praxair
CHF3 (99.9950%) Praxair
H2 (99.9950%) Praxair
C2H2 (99.6000%) Praxair
Equipment Company Catalog Number Comments/Description
EVG 120 coater/developer EVG
ASML PAS5500/80 waferstepper ASML
SPTS Ωmega 201 plasma etcher SPTS Used for Si and metal etching
SPTS Σigma sputter coater SPTS
Novellus Concept One PECVD LAM
Drytek 384T plasma etcher LAM Used for oxide etching
CHA Solution e-beam evaporator CHA
AIXTRON BlackMagic Pro CVD tool AIXTRON Carbon nanotube growth
Philips XL50 scanning electron microscope FEI
Tepla 300 PVA TePla Resist plasma stripper
Avenger rinser dryer Microporcess Technologies
Leitz MPV-SP reflecometer Leitz
Renishaw inVia Raman spectroscope Renishaw
Agilent 4156C parameter spectrum analyzer Agilent
Cascade Microtech probe station Cascade Microtech

References

  1. Sun, S. C. Process technologies for advanced metallization and interconnect systems. Technical digest of the IEEE International Electron Devices Meeting. , 765-768 (1997).
  2. Robertson, J. Growth of nanotubes for electronics. Mater. Today. 10 (1-2), 36-43 (2007).
  3. Wei, B. Q., Vajtai, R., Ajayan, P. M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79 (8), 1172-1174 (2001).
  4. Rossnagel, S. M., Wisnieff, R., Edelstein, D., Kuan, T. S. Interconnect issues post 45nm. Technical digest of the IEEE International Electron Devices Meeting. , 89-91 (2005).
  5. Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 6 (1), 96-100 (2006).
  6. Chiodarelli, N., et al. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Nanotechnology. 22 (8), 085302 (2011).
  7. Choi, Y. -. M., et al. Integration and Electrical Properties of Carbon Nanotube Array for Interconnect Applications. Proceedings of the Sixth IEEE Conference on Nanotechnology. , 262-265 (2006).
  8. Dijon, J., et al. Ultra-high density Carbon Nanotubes on Al-Cu for advanced Vias. Technical digest of the IEEE International Electron Devices Meeting. , 33-34 (2010).
  9. Kreupl, F., et al. Carbon nanotubes in interconnect applications. Microelectron. Eng. 64 (1-4), 399-408 (2002).
  10. Vereecke, B., et al. Characterization of carbon nanotube based vertical interconnects. Extended Abstracts of the 2012 International Conference on Solid State Devices and Materials. , 648-649 (2012).
  11. Vollebregt, S., Ishihara, R., Derakhshandeh, J., vander Cingel, J., Schellevis, H., Beenakker, C. I. M. Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology. Proceedings of the 11th IEEE Conference on Nanotechnology. , 985-990 (2011).
  12. Yokoyama, D., et al. Electrical Properties of Carbon Nanotubes Grown at a Low Temperature for Use as Interconnects. Jpn J. App. Phys. 47 (4), 1985-1990 (2008).
  13. Van der Veen, M. H., et al. Electrical Improvement of CNT Contacts with Cu Damascene Top Metallization. Proceedings of the IEEE International Interconnect Technology Conference. , 193-195 (2013).
  14. Istratov, A. A., Hieslmair, H., Weber, E. R. Iron contamination in silicon technology. Appl. Phys. A. 70, 489-534 (2000).
  15. Vollebregt, S., Tichelaar, F. D., Schellevis, H., Beenakker, C. I. M., Ishihara, R. Carbon nanotube vertical interconnects fabricated at temperatures as low as 350 °C. 71, 249-256 (2014).
  16. Kikkawa, T., Inoue, K., Imai, K. Cobalt silicide technology. Silicide Technology for Integrated Circuits. , 77-94 (2004).
  17. Vollebregt, S., Ishihara, R., Tichelaar, F. D., Hou, Y., Beenakker, C. I. M. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon. 50 (10), 3542-3554 (2012).
  18. Lim, S. C., et al. Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability. Appl. Phys. Lett. 95 (26), 264103 (2009).
  19. Awano, Y., et al. Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation. Phys. Status Solidi (a). 203 (14), 3611-3616 (2006).
  20. Van der Veen, M. H., et al. Electrical characterization of CNT contacts with Cu Damascene top contact. Microelectron. Eng. 106, 106-111 (2012).
  21. Horibe, M., Nihei, M., Kondo, D., Kawabata, A., Awano, Y. Mechanical Polishing Technique for Carbon Nanotube Interconnects in ULSIs. Jpn J. App. Phys. 43 (9A), 6499-6502 (2004).
  22. Vollebregt, S., Chiaramonti, A. N., Ishihara, R., Schellevis, H., Beenakker, C. I. M. Contact resistance of low-temperature carbon nanotube vertical interconnects. Proceedings of the 12th IEEE Conference on Nanotechnology. , 424-428 (2012).
  23. Fiorentino, G., Vollebregt, S., Tichelaar, F. D., Ishihara, R., Sarro, P. M. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances. Nanotechnology. 26 (6), 064002 (2015).
check_url/fr/53260?article_type=t

Play Video

Citer Cet Article
Vollebregt, S., Ishihara, R. Fabrication of Low Temperature Carbon Nanotube Vertical Interconnects Compatible with Semiconductor Technology. J. Vis. Exp. (106), e53260, doi:10.3791/53260 (2015).

View Video