Summary

作为错误脉冲减少食物选择的一种手段

Published: June 05, 2016
doi:

Summary

Giving in to temptation of tasty food may result in long-term overweight problems. This protocol describes how to reduce imprudent preference for edible commodities during hypothetical intertemporal choices in women by associating them with errors.

Abstract

Nowadays, the increasing incidence of eating disorders due to poor self-control has given rise to increased obesity and other chronic weight problems, and ultimately, to reduced life expectancy. The capacity to refrain from automatic responses is usually high in situations in which making errors is highly likely. The protocol described here aims at reducing imprudent preference in women during hypothetical intertemporal choices about appetitive food by associating it with errors. First, participants undergo an error task where two different edible stimuli are associated with two different error likelihoods (high and low). Second, they make intertemporal choices about the two edible stimuli, separately. As a result, this method decreases the discount rate for future amounts of the edible reward that cued higher error likelihood, selectively. This effect is under the influence of the self-reported hunger level. The present protocol demonstrates that errors, well known as motivationally salient events, can induce the recruitment of cognitive control, thus being ultimately useful in reducing impatient choices for edible commodities.

Introduction

如今,关键的是要帮助人们面临饮食失调1-4的崛起。这些疾病反映与食欲的食物,诱使个人寻求并尽快食用它相关的激励动机的高估(这已被证明特别是甜的高脂肪食物5-6)。这发生在的,可能导致被上了一段时间的饮食未来利益为代价,而是要发挥饮食控制的能力是必要的7-8。事实上,不少人显示这些异常行为已经对食用线索9-10和初级奖励11经验,增强激励值升高注意偏向。此外,即使只是在寻找的美味食品可以定位为立即消耗食物的欲望,无论是在与饮食失调的个体和在正常人群12-13。为了从即时满足避免,而不是放弃长期outco我( 例如 ,饮食几个月后减肥),必须运动量大的自控和抵御先天之本,进化决心冲动给诱惑并立即消费。发挥自我控制,这是相互关联在神经科学领域的认知控制的概念,一个概念,指的是能够克服的先天冲动进一步审议,可能的话,实施其他更恰当的行为14。

个人如何进行自我控制战略?研究发现,人们的能力从自动应答避免错误满语境15加高年。错误是深思熟虑高度唤起和厌恶事件,当遇到,引起代偿反应16。具体来说,他们CUE在性能和实用功能衰竭/损失,以此暗示一个需要过电流和f调节控制水平uture相应的行为17。此外,错误可以提示厌恶学习,以警示方式,从易出错,适应不良行为逃脱,从而诱导的最佳选择反应18-21的实施。

本协议显示了如何美味的食物和错误之间的关系可以用信号,在一定的行为参与将导致成本( ,奖励损失),从而鼓励代偿自我控制策略的实施,从而减少冲动的食物选择20,22。在改编自23,本协议中,参与者被要求事先自行报告他们的饥饿水平在实验的时间和评价六个不同的食物。根据收视率,两种食物与每个科目等值奖励价值选择为后续任务。然后,参与者执行其中两个以前选择的食物它错误任务(见参考文献24)EMS线索不同错误率(高和低)与性能相关联:该错误任务被编程,使得在一次试验条件下,通过一种食物线索,与会者使一个小数目的错误,并在其它试验条件下,由另一线索食品,它们使错误的数目大得多。随后,参加者为两个主要奖励跨期选择测量(改编自参考25)。寻求更快,而不是满足,面对诱人的食物时,而被节食,确实是由清脆跨期选择捕获这一点至关重要较大,但延迟增援的能力范式26。的时间越长人们需要等待一个好的被接收并消耗时,更这种潜在奖励的主观评价被削弱( 所谓的颞贴现现象27-34)。可怜的决定( 更倾向于选择关闭的满足,即提高了时间对于未来收益贴现)被认为是冲动35的核心功能和众多障碍,包括吸毒和肥胖36-45的一个里程碑。在接受本协议描述的步骤后,参加展示减少不耐烦选择刺激插入字幕出错率高,选择性。该效果更加明显,当由受试者报告饥饿水平低23。这是因为饥饿通过提高初级奖励的激励值影响的食品46-49即时评价,反过来,这些奖励7,50-52未来的量的折现率。

这种方法的优点首先在于它容易适用性。前述时际决定任务的误差训练是几乎完全不费力,从而有可能在不同的临床设置中使用。第二,该方法产生具有假想食用物品的期望的效果,而不需要使用真正的食物。第三,参与者主要是不知道食品的错误关联,使得对食物的喜好正品,这可能会影响食物可靠的决策在现实生活中,以及后续效应。最后,参加者在研究23测试的都是年轻女性,但有很好的理由推测,在跨期决策食物错误搭配的效果将是对年轻男性同样也是如此,主要是因为在目前的研究对象是不知道的预期的效果。

Protocol

伦理声明:在本协议中描述的所有程序进行开发和测试之后,从博洛尼亚大学心理学系的伦理委员会的伦理批准(见赫尔辛基23,53宣言)。 1.参加者选择健康的年轻成年女性的样本。 征集参与者谁不节食,不服用精神药物,​​免费当前或过去的精神或神经疾病的历史决定的,天真的实验的目的。 邀请志愿者在安静的房间坐下,并收集他?…

Representative Results

从上述的协议的应用的代表性结果在这里报告。 错误的任务错误任务的有效性已经通过下面的结果来确定。关于参与者犯下错误的百分比,他们表现出显著更高一些错误的HE比LE条件下,在停止审判比在围棋试验一个显著较高的一些错误,并在停止试验的一个显著更高一些错误在何…

Discussion

本文详细介绍了一种新的协议旨在减少健康的年轻成年女性冲动的食物选择。在这个协议中的关键步骤包括从健康女性人口采样参与者,在实验的时间收集自我报告饥饿程度,选择两种食物具有同等激励值对于每个受试者,在提交参加者的错误任务,其中每个的两个不同的误差似然性(高,低,在各试验无规地散布)与两个预选食品之一相关联,并且分别测量参与者跨期选择每个预选的食物。这?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

授予国内生产总值:这项工作是由Ministero Istruzione UNIVERSITAËRicerca(2010XPMFW4_009 PRIN 2010年,协议号)的Programmi迪Ricerca Scientifica迪Rilevante Interesse Nazionale大街(PRIN)资助。我们也感谢卡特里纳贝尔蒂尼和拉法埃拉马里诺校对书稿和表演视频。

Materials

E-Prime PST Stimulus Delivery Software
Statistica Statsoft Statistical Software

References

  1. Haslam, D. W., James, W. P. Obesity. Lancet. 366 (9492), 1197-1209 (2005).
  2. Knight, J. A. Diseases and disorders associated with excess body weight. Ann Clin Lab Sci. 41 (2), 107-121 (2011).
  3. Fortuna, J. L. The obesity epidemic and food addiction: clinical similarities to drug dependence. J Psychoactive Drugs. 44 (1), 56-63 (2012).
  4. Bowden, D. J., Kilburn-Toppin, F., Scoffings, D. J. Radiology of eating disorders: a pictorial review. Radiographics. 33 (4), 1171-1193 (2013).
  5. Davis, C., et al. From motivation to behaviour: a model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite. 48 (1), 12-19 (2007).
  6. Dalton, M., Blundell, J., Finlayson, G. Effect of BMI and binge eating on food reward and energy intake: Further evidence for a binge eating subtype of obesity. Obes Facts. 6 (4), 348-359 (2013).
  7. Epstein, L. H., Salvy, S. J., Carr, K. A., Dearing, K. K., Bickel, W. K. Food reinforcement, delay discounting and obesity. Physiol Behav. 100 (5), 438-445 (2010).
  8. Appelhans, B. M., et al. Inhibiting food reward: delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women. Obesity. 19 (11), 2175-2182 (2011).
  9. Svaldi, J., Tuschen-Caffier, B., Peyk, P., Blechert, J. Information processing of food pictures in binge eating disorder. Appetite. 55 (3), 685-694 (2010).
  10. Brooks, S., Prince, A., Stahl, D., Campbell, I. C., Treasure, J. A systematic review and meta-analysis of cognitive bias to food stimuli in people with disordered eating behaviour. Clin Psychol Rev. 31 (1), 37-51 (2011).
  11. Schebendach, J., Broft, A., Foltin, R. W., Walsh, B. T. Can the reinforcing value of food be measured in bulimia nervosa. Appetite. 62, 70-75 (2013).
  12. Hawk, L. W., Baschnagel, J. S., Ashare, R. L., Epstein, L. H. Craving and startle modification during in vivo exposure to food cues. Appetite. 43 (3), 285-294 (2004).
  13. di Pellegrino, G., Magarelli, S., Mengarelli, F. Food pleasantness affects visual selective attention. Q J Exp Psychol. 64 (3), 560-571 (2011).
  14. Miller, E. K., Cohen, J. D. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 24, 167-202 (2001).
  15. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., Cohen, J. D. Conflict monitoring and cognitive control. Psychol Rev. 108 (3), 624-652 (2001).
  16. Hajcak, G., Foti, D. Errors are aversive: defensive motivation and the error-related negativity. Psychol Sci. 19 (2), 103-108 (2008).
  17. Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S. J., Carter, C. S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cognition. 56 (2), 129-140 (2004).
  18. Holroyd, C. B., Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychol Rev. 109 (4), 679-709 (2002).
  19. Yeung, N., Botvinick, M. M., Cohen, J. D. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev. 111 (4), 931-959 (2004).
  20. Shackman, A. J., et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci. 12 (3), 154-167 (2011).
  21. Frank, M. J., Woroch, B. S., Curran, T. Error-related negativity predicts reinforcement learning and conflict biases. Neuron. 47 (4), 495-501 (2005).
  22. Fujita, K., Han, H. A. Moving beyond deliberative control of impulses: the effect of construal levels on evaluative associations in self-control conflicts. Psychol Sci. 20 (7), 799-804 (2009).
  23. Sellitto, M., di Pellegrino, G. Errors affect hypothetical intertemporal food choice in women. PLoS ONE. 9 (9), 108422 (2014).
  24. Brown, J. W., Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science. 307 (5712), 1118-1121 (2005).
  25. Sellitto, M., Ciaramelli, E., di Pellegrino, G. Myopic discounting of future rewards after medial orbitofrontal damage in humans. J Neurosci. 30 (49), 16429-16436 (2010).
  26. Takahashi, T., Ikeda, K., Hasegawa, T. A hyperbolic decay of subjective probability of obtaining delayed rewards. Behav Brain Funct. 3, 52 (2007).
  27. Frederick, S., Loewenstein, G., O’Donoghue, T. Time discounting and time preference: a critical review. J Econ Lit. 40 (2), 351-401 (2002).
  28. Sellitto, M., Ciaramelli, E., di Pellegrino, G. The neurobiology of intertemporal choice: insight from imaging and lesion studies. Rev Neurosci. 22 (5), 565-574 (2011).
  29. Samuelson, P. A. A note on measurement of utility. Review Econ Stud. 4 (2), 155-161 (1937).
  30. Ainslie, G. W. Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull. 82 (4), 463-496 (1975).
  31. Myerson, J., Green, L. Discounting of delayed rewards: models of individual choice. J Exp Anal Behav. 64 (3), 263-276 (1995).
  32. Cardinal, R. N., Pennicott, D. R., Sugathapala, C. L., Robbins, T. W., Everitt, B. J. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science. 292 (5526), 2499-2501 (2001).
  33. Kalenscher, T., et al. Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Curr Biol. 15 (7), 594-602 (2005).
  34. Peters, J., Büchel, C. Neural representations of subjective reward value. Behav Brain Res. 213 (2), 135-141 (2010).
  35. Takahashi, T. Loss of self-control in intertemporal choice may be attributable to logarithmic time-perception. Med Hypotheses. 65 (4), 691-693 (2005).
  36. Mischel, W., Shoda, Y., Peake, P. K. The nature of adolescent competencies predicted by preschool delay of gratification. J Pers Soc Psychol. 54 (4), 687-699 (1988).
  37. Davis, C., Levitan, R. D., Muglia, P., Bewell, C., Kennedy, J. L. Decision-making deficits and overeating: A Risk model for obesity. Obes Res. 12 (6), 929-935 (2004).
  38. Davis, C., Patte, K., Curtis, C., Reid, C. Immediate pleasures and future consequences. A neuropsychological study of binge eating and obesity. Appetite. 54 (1), 208-213 (2010).
  39. Bickel, W. K., et al. Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug Alcohol Depen. 90 (1), 85-91 (2007).
  40. Weller, R. E., Cook, E., Avsar, K., Cox, J. Obese women show greater delay discounting than healthy-weight women. Appetite. 51 (3), 563-569 (2008).
  41. Manwaring, J. L., Green, L., Myerson, J., Strube, M. J., Wilfley, D. E. Discounting of various types of rewards by women with and without binge eating disorder: Evidence for general rather than specific differences. Psychol Rec. 61 (4), 561-582 (2011).
  42. Appelhans, B. M., et al. Delay discounting and intake of ready-to-eat and away-from-home foods in overweight and obese women. Appetite. 59 (2), 576-584 (2012).
  43. Kishinevsky, F. I., et al. fMRI reactivity on a delay discounting task predicts weight gain in obese women. Appetite. 58 (2), 582-592 (2012).
  44. Bickel, W. K., et al. Using crowdsourcing to compare temporal, social temporal, and probability discounting among obese and non-obese individuals. Appetite. 75, 82-89 (2013).
  45. Schiff, S., et al. Impulsivity toward food reward is related to BMI Evidence from intertemporal choice in obese and normal-weight individuals. Brain Cogn. , 1-8 (2015).
  46. Kringelbach, M. L. Food for thought: hedonic experience beyond homeostasis in the human brain. Neurosciences. 126 (4), 807-819 (2004).
  47. Seibt, B., Hafner, M., Deutsch, R. Prepared to eat: How immediate affective and motivational responses to food cues are influenced by food deprivation. Eur J Soc Psychol. 37, 359-379 (2007).
  48. Stafford, L. D., Scheffler, G. Hunger inhibits negative associations to food but not auditory biases in attention. Appetite. 51 (3), 1-15 (2008).
  49. Piech, R. M., Hampshire, A., Owen, A. M., Parkinson, J. A. Modulation of cognitive flexibility by hunger and desire. Cogn Emot. 23, 528-540 (2009).
  50. Lappalainen, R., Epstein, L. H. A behavioral economics analysis of food choice in humans. Appetite. 14 (2), 81-93 (1990).
  51. Epstein, L. H., Paluch, R., Coleman, K. J. Differences in salivation to repeated food cues in obese and nonobese women. Psychosom Med. 58 (2), 160-164 (1996).
  52. Epstein, L. H., Truesdale, R., Wojcik, A., Paluch, R. A., Raynor, H. A. Effects of deprivation on hedonics and reinforcing value of food. Physiol Behav. 78 (2), 221-227 (2003).
  53. . International Committee of Medical Journal Editors Statements from the Vancouver group. Brit Med J. 302, 1194 (1991).
  54. Smalley, K. J., Knerr, A. N., Kendrick, Z. V., Colliver, J. A., Owen, O. E. Reassessment of body mass indices. Am J Clin Nutr. 52 (3), 405-408 (1990).
  55. Borghans, L., Golsteyn, B. H. H. Time discounting and the body mass index: Evidence from the Netherlands. Econ Hum Biol. 4 (1), 39-61 (2006).
  56. Likert, R. A technique for the measurement of attitudes. Arch Psychol. 140, 1-55 (1932).
  57. Sibilia, L. The cognition of hunger and eating behaviours. Psihologijske Teme. 19, 341-354 (2010).
  58. Asmaro, D., Jaspers-Fayer, F., Sramko, V., Taake, I., Carolan, P., Liotti, M. Spatiotemporal dynamics of the hedonic processing of chocolate images in individuals with and without trait chocolate craving. Appetite. 58, 790-799 (2012).
  59. Asmaro, D., Liotti, M. High-caloric and chocolate stimuli processing in healthy humans: An integration of functional imaging and electrophysiological findings. Nutrients. 6, 319-341 (2014).
  60. Lawrence, N. S., Hinton, E. C., Parkinson, J. A., Lawrence, A. D. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. NeuroImage. 63 (1), 415-422 (2012).
  61. Siep, N., Roefs, A., Roebroeck, A., Havermans, R., Bonte, M. L., Jansen, A. Hunger is the best spice: An fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav Brain Res. 198, 149-158 (2009).
  62. Piech, R. M., et al. Neural correlates of appetite and hunger-related evaluative judgments. PloS one. 4 (8), 6581 (2009).
  63. Logan, G. D., Cowan, W. B. On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev. 91 (3), 295-327 (1984).
  64. Bickel, W. K., Pitcock, J. A., Yi, R., Angtuaco, E. J. Congruence of BOLD response across intertemporal choice conditions: fictive and real money gains and losses. J Neurosci. 29 (27), 8839-8846 (2009).
  65. Johnson, M. W., Bickel, W. K. Within-subject comparison of real and hypothetical money rewards in delay discounting. J Exp Anal Behav. 77 (2), 129-146 (2002).
  66. Kirby, K. N., Herrnstein, R. J. Preference reversals due to myopic discounting of delayed reward. Psychol Sci. 6 (2), 83-89 (1995).
  67. Myerson, J., Green, L., Hanson, J. S., Holt, D. D., Estle, S. J. Discounting delayed and probabilistic rewards: Processes and traits. J Econ Psychol. 24, 619-635 (2003).
  68. Estle, S. J., Green, L., Myerson, J., Holt, D. D. Discounting of monetary and directly consumable rewards. Psychol Sci. 18 (1), 58-63 (2007).
  69. Mazur, J. E. An adjusting procedure for studying delayed reinforcement. Quantitative analyses of behavior: The effect of delay and of intervening events on reinforcement value. 5, 55-73 (1987).
  70. Rachlin, H., Raineri, A., Cross, D. Subjective probability and delay. J Exp Anal Behav. 55 (2), 233-244 (1991).
  71. Green, L., Myerson, J. A discounting framework for choice with delayed and probabilistic rewards. Psychol Bull. 130 (5), 769-792 (2004).
  72. Van Strien, T., Bergers, G. P. A., Defares, P. B. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disorder. 5 (2), 295-315 (1986).
  73. Botvinick, M. M. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn Affect Behav Neurosci. 7 (4), 356-366 (2007).
  74. McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., Cohen, J. D. Time discounting for primary rewards. J Neurosci. 27 (21), 5796-5804 (2007).
  75. Bickel, W. K., Yi, R., Houser, D., McCabe, K. Temporal discounting as a measure of executive function: Insights from the competing neurobehavioral decision system hypothesis of addiction. Neuroeconomics: Advances in health economics and health services research. , 289-310 (2008).
  76. Cook, E. W., Turpin, G., Lang, P. J., Simons, R. F., Balaban, M. Y. Differentiating orienting, startle, and defense responses: The role of affect and its implications for psychopathology. Attention and orienting: Sensory and motivational processes. 23, 137-164 (1997).
  77. Notebaert, W., et al. Post-error slowing: an orienting account. Cognition. 111, 275-279 (2009).
  78. Luu, P., Collins, P., Tucker, D. M. Mood , personality, and self-monitoring: negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. J Exp Psychol Gen. 129 (1), 43-60 (2000).
  79. van der Helden, J., Boksem, M. A., Blom, J. H. The importance of failure: feedback-related negativity predicts motor learning efficiency. Cereb Cortex. 20 (7), 1596-1603 (2010).
  80. Schultz, W. Predictive reward signal of dopamine neurons. J Neurophysiol. 80 (1), 1-27 (1998).
  81. Figner, B., et al. Lateral prefrontal cortex and self-control in intertemporal choice. Nat Neurosci. 13, 538-539 (2010).
  82. Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., Baler, R. Food and drug reward: Overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci. 11, 1-24 (2011).
  83. Guerrieri, R., Nederkoorn, C., Jansen, A. Disinhibition is easier learned than inhibition. The effects of (dis)inhibition training on food intake. Appetite. 59 (1), 96-99 (2012).
  84. Avena, N. M., Rada, P., Hoebel, B. G. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neurosciences. 156 (4), 865-871 (2008).
  85. Gearhardt, A. N., et al. Neural correlates of food addiction. Arch Gen Psychiat. 68 (8), 808-816 (2011).
  86. Umberg, E. N., Shader, R. I., Hsu, L. K., Greenblatt, D. J. From disordered eating to addiction: the ”food drug” in bulimia nervosa. J Clin Psychopharm. 32 (3), 376-389 (2012).
  87. Daniel, T. O., Stanton, C. M., Epstein, L. H. The future is now: reducing impulsivity and energy intake using episodic future thinking. Psychol Sci. 24 (11), 2339-2342 (2013).
  88. Lawrence, N. S., Verbruggen, F., Morrison, S., Adams, R. C., Chambers, C. D. Stopping to food can reduce intake. Effects of stimulus-specificity and individual differences in dietary restraint. Appetite. 85, 91-103 (2015).
  89. Wessel, J. R., Tonnesen, A. L., Aron, A. R. Stimulus devaluation induced by action stopping is greater for explicit value representations. Front Psychol. 6, 1-10 (2015).
  90. Anderson, B. A., Laurent, P. A., Yantis, S. Value-driven attentional capture. Proc Natl Acad Sci USA. 108 (25), 10367-10371 (2011).
  91. Wessel, J. R., Doherty, J. P. O., Berkebile, M. M., Linderman, D., Aron, A. R. Stimulus devaluation induced by stopping action. J Exp Psychol Gen. 143 (6), 1-14 (2014).
  92. Marteau, T. M., Hollands, G. J., Fletcher, P. C. Changing human behavior to prevent disease: The importance of targeting automatic processes. Science. 337, 1492-1495 (2012).
  93. Houben, K., Nederkoorn, C., Wiers, R. W., Jansen, A. Resisting temptation: decreasing alcohol-related affect and drinking behavior by training response inhibition. Drug Alcohol Depen. 116 (1-3), 132-136 (2011).
  94. Mischel, W., Shoda, Y., Rodriguez, M. I. Delay of gratification in children. Science. 244, 933-938 (1989).
  95. Schlam, T. R., Wilson, N. L., Shoda, Y., Mischel, W., Ayduk, O. Preschoolers’ delay of gratification predicts their body mass 30 years later. J Pediatr. 162 (1), 90-93 (2013).
check_url/fr/53283?article_type=t

Play Video

Citer Cet Article
Sellitto, M., di Pellegrino, G. Errors as a Means of Reducing Impulsive Food Choice. J. Vis. Exp. (112), e53283, doi:10.3791/53283 (2016).

View Video