Summary

نمذجة خطوات المبكر عن سرطان المبيض نشر في الثقافة عضوي النمط من البريتوني تجويف الإنسان

Published: December 31, 2015
doi:

Summary

Here, we present a protocol to construct a three-dimensional in vitro model of the lining of the peritoneal cavity, composed of primary human mesothelial cells and fibroblasts layered with extracellular matrix, as a tool to investigate ovarian cancer cell adhesion, invasion, and proliferation.

Abstract

The pattern of ovarian cancer metastasis is markedly different from that of most other epithelial tumors, because it rarely spreads hematogenously. Instead, ovarian cancer cells exfoliated from the primary tumor are carried by peritoneal fluid to metastatic sites within the peritoneal cavity. These sites, most notably the abdominal peritoneum and omentum, are organs covered by a mesothelium-lined surface. To investigate the processes of ovarian cancer dissemination, we assembled a complex three-dimensional culture system that reconstructs the lining of the peritoneal cavity in vitro. Primary human fibroblasts and mesothelial cells were isolated from human omentum. The fibroblasts were then mixed with extracellular matrix and covered with a layer of the primary human mesothelial cells to mimic the peritoneal and omental surfaces encountered by metastasizing ovarian cancer cells. The resulting organotypic model is, as shown, used to examine the early steps of ovarian cancer dissemination, including cancer cell adhesion, invasion, and proliferation. This model has been used in a number of studies to investigate the role of the microenvironment (cellular and acellular) in early ovarian cancer dissemination. It has also been successfully adapted to high throughput screening and used to identify and test inhibitors of ovarian cancer metastasis.

Introduction

Ovarian cancer is the deadliest gynecologic malignancy1. The majority of patients are diagnosed after the cancer has disseminated throughout the peritoneal cavity. Once the cancer has spread throughout the peritoneal cavity, cytoreductive surgery and chemotherapy are often not sufficient treatment to prevent cancer recurrence and chemoresistance, resulting in a less than 30% 5-year survival rate. Ovarian cancer metastasis is predominantly limited to the peritoneal cavity, and several other cancer types, including gastric, pancreatic, and colon cancers, metastasize to the same anatomic sites in the peritoneal cavity. In general, ovarian cancer cells detach from the in situ carcinoma in the fallopian tube or the primary ovarian tumor, travel in peritoneal fluid as single cells or spheroids, and attach to mesothelium-lined surfaces of the omentum, bowel, and abdominal wall2.

The tumor microenvironment plays an important role in disease progression and chemoresistance in many cancers3-6. The peritoneal cavity is a unique microenvironment, with a mesothelial cell monolayer covering the majority of surfaces (Figure 1A)7. The mesothelial lining acts as a barrier that creates a low-friction surface, which tends to be protective against cancer cell adhesion8. Immediately underneath this mesothelial-lined surface is a layer made predominantly of fibroblasts and extracellular matrix (ECM), which promote cancer cell adhesion and invasion8. Ovarian cancer cells secrete factors that induce changes in the mesothelial cell lining that enhance ovarian cancer cell adhesion, invasion, and metastasis9,10. Ovarian cancer cells adhere to the mesothelial surface via integrin and CD44-mediated mechanisms (Figure 1B)11-16.

Historically, several 3D models have been developed to investigate ovarian cancer interactions with the microenvironment. Some of the first models studied ovarian cancer-ECM interface17-21, ovarian cancer-mesothelial cell communication13,14,21-24, or both25 (reviewed by us 26). Niedbala et al. discovered that ovarian cancer cells display a quicker and firmer adhesion to ECM than to mesothelial cells or to plastic alone25. However, these models did not histologically resemble the peritoneal microenvironment. Therefore, we established a 3D organotypic model to more thoroughly replicate the ovarian cancer microenvironment. In order to better understand the role of the microenvironment and the interaction between cancer and peritoneal cells in the peritoneal dissemination of ovarian cancer, we have developed a 3D organotypic in vitro culture model of the peritoneal cavity lining (schematic in Figure 1C). The proposed model is composed of primary human fibroblasts and ECM, covered with a layer of primary human mesothelial cells-each cell type is isolated from human omentum. Histologically, this model resembles the normal peritoneal or omental lining, and provides a surface on which we can study the tumor microenvironment, the interaction between cancer cells and normal tissue, and the processes of cancer cell adhesion, invasion, and proliferation8.

Protocol

وقد تم استعراض جميع بروتوكولات البحوث التي وصفها جامعة شيكاغو المؤسسي مجلس مراجعة (IRB). تم الحصول على الموافقة المسبقة من كل مريض قبل الجراحة وتمت الموافقة على الدراسة من جامعة شيكاغو IRB. A السلامة البيولوجية نوع مجلس الوزراء (2) وقفازات وينبغي أن تستخدم عند التعامل مع ?…

Representative Results

تم تجميعها ثقافة عضوي النمط عن طريق خلط أولا الليفية الإنسان الأساسية مع نوع الكولاجين I ثم تتراكب هذه الثقافة مع 5 أضعاف عدد الخلايا الظهارية. وقد حضنت ثقافة لا يقل عن 18 ساعة قبل أضيفت خلايا سرطان المبيض لدراسة الالتصاق، والغزو أو الانتشار. وتكرر كل مقايسة مع متعددة (?…

Discussion

أنشئ نموذج عضوي النمط من المكروية البريتوني لتقييم وظيفة الفردية والجماعية (ق) من كل من المكونات الخلوية والفطرية المكروية في نشر بسرطان المبيض. وتقدم بروتوكولات محددة لطلاء وتخصيص ثقافة عضوي النمط 3D للتحقيق في المبيض التصاق الخلايا السرطانية، والانتشار، والغزو. ت?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank all residents and attending physicians, notably Dr. A.F. Haney (the University of Chicago, Department of Obstetrics and Gynecology) for collecting omental biopsies. Also, we thank Stacey Tobin and Gail Isenberg for carefully editing this manuscript. This work was supported by Bears Care, the charitable beneficiary of the Chicago Bears Football Club, the National Institute of Neurological Disorders and Stroke (NINDS) R21 NS075702, and the National Cancer Institute grant R01 CA111882 to E.L.

Materials

1. Isolation and culture of primary cells
PBS Fisher Scientific SH3001304
Single-edged razor blades Fisher Scientific 12-640
15 cm culture dishes BD Biosciences 353025
Glass flask ? ?
Fetal Bovine Serum (FBS) Life Technologies 16000044_3616914956
DMEM with L-Glutamine Corning 10-013-CV
MEM Vitamins Corning 25-020-Cl
MEM Nonessential amino acids Corning 25-025-CI
Penicillin-Streptomycin Corning 30-002-CI
Shaker  Thermo-Fisher MaxQ 4450
Centrifuge Eppendorf 5702
Incubator Thermo-Fisher Forma Series II Water Jacketed CO2 Incubator Model 3100
Trypsin EDTA, 1x (0.25%) Corning 25-053-CI
Hyaluronidase Worthington Biochemical LS002592
T-75 Flasks BD Biosciences 353136
T-175 Flasks BD Biosciences 353112
Pipet tips Rainin P2, P10, P20, P200 and P1000
Pipet tips Corning Filtered tips P2, P10, P20, P200 and P1000
Name of Reagent/ Equipment Company Catalog Number Comments/Description
2. Plating 3D culture
Cell Counter Invitrogen Countess
Countess Cell Counting Chamber Slides Invitrogen C10313
Trypan Blue Stain (0.4%) Gibco 15250-061
Collagen Type I (Rat Tail) BD Biosciences 354236
96 well plate, clear bottom, black BD Biosciences 353219
Name of Reagent/ Equipment Company Catalog Number Comments/Description
3. Adhesion assay
Multichannel pipet Eppendorf Xplorer 300
Paraformaldehyde solution 4% in PBS Santa Cruz Biotechnology sc-281692
Plate reader Molecular Devices Minimax
Name of Reagent/ Equipment Company Catalog Number Comments/Description
5. Invasion assay
Cell Culture Inserts (8um, 24-well) BD Biosciences 353097
Cotton swabs Q-tips cotton swabs
Microscope Zeiss Axiovert 200m
Cell Profiler public domain
24 well plate BD Biosciences 353047
Name of Reagent/ Equipment Company Catalog Number Comments/Description
6. Antibodies
Anti-Integrin αVβ3 Antibody, clone LM609 EMD Millipore MAB1976
Beta 1  Oncosynergy OS2966
Alpha 5 [CD49e] ID Pharmingen 555615
Beta 4 [CD104] EMD Millipore MAB 2058

References

  1. Siegel, R., Ma, J., Zou, Z., Jemal, A. Cancer statistics. CA Cancer J. Clin. 65 (1), 5-29 (2015).
  2. Lengyel, E. Ovarian cancer development and metastasis. Am. J. Pathol. 177, 1053-1064 (2010).
  3. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437 (2013).
  4. Correia, A. L., Bissell, M. J. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat. 15, 39-49 (2012).
  5. Hanahan, D., Coussens, L. M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21, 309-322 (2012).
  6. Nieman, K. M., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498-1503 (2011).
  7. Daya, D., McCaughy, W. T. Pathology of the peritoneum: A review of selected topics. Semin. Diagn. Pathol. 8, 277-289 (1991).
  8. Kenny, H. A., Krausz, T., Yamada, S. D., Lengyel, E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells. Int. J. Cancer. 121, 1463-1472 (2007).
  9. Kenny, H. A., Kaur, S., Coussens, L. M., Lengyel, E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest. 118, 1367-1379 (2008).
  10. Kenny, H. A., et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J. Clin. Invest. 124, 4614-4628 (2014).
  11. Strobel, T., Cannistra, S. A. β1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol. Oncol. 73, 362-367 (1999).
  12. Strobel, T., Swanson, L., Cannistra, S. A. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: A novel role for CD 44 in the process of peritoneal implantation. Cancer Res. 57, 1228-1232 (1997).
  13. Iwanicki, M., et al. Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Discov. 1, 144-157 (2011).
  14. Lessan, K., Aguiar, D., Oegema, T. R., Siebenson, L., Skubitz, A. P. CD44 and β1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am. J. Pathol. 154, 1525-1537 (1999).
  15. Ahmed, N., Riley, C., Rice, G., Quinn, M. Role of integrin receptors for fibronectin, collagen and laminin in the regulation of ovarian carcinoma functions in response to a matrix microenvironment. Clin. Exp. Metastasis. 22, 391-402 (2005).
  16. Kaur, S., et al. β3-integrin expression on tumor cells inhibits tumor progression, reduces metastasis, and is associated with a favorable prognosis in patients with ovarian cancer. Am. J. Pathol. 175, 2184-2196 (2009).
  17. Niedbala, M. J., Crickard, K., Bernacki, R. In vitro degradation of extracellular matrix by human ovarian carcinoma cells. Clin. Exp. Metastasis. 5, 181-197 (1987).
  18. Kanemoto, T., Martin, G. R., Hamilton, T. C., Fridman, R. Effects of synthetic peptides and protease inhibitors on the interaction of a human ovarian cancer cell line (NIH:OVCAR-3) with a reconstituted basement membrane (matrigel). Invasion Metastasis. 11, 84-92 (1991).
  19. Rieppi, M., et al. Mesothelial cells induce the motility of human ovarian carcinoma cells. Int. J. Cancer. 80, 303-307 (1999).
  20. Barbolina, M. V., Adley, B. P., Ariztia, E. V., Liu, Y., Stack, M. S. Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression. J. Biol. Chem. 282, 4924-4931 (2007).
  21. Burleson, K. M., et al. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol. Oncol. 93, 170-181 (2004).
  22. Suzuki, N., et al. HMOCC-1, a human monoclonal antibody that inhibits adhesion of ovarian cancer cells to human mesothelial cells. Gynecol. Oncol. 95, 290-298 (2004).
  23. Kishikawa, T., et al. Two distinct pattern of peritoneal involvement shown by in vitro and in vivo ovarian cancer dissemination models. Invas. Metast. 15, 11-21 (1995).
  24. Casey, R. C., et al. Establishment of an in vitro assay to measure the invasion of ovarian carcinoma cells through mesothelial cell monolayers. Clin. Exp. Metastasis. 20, 343-356 (2003).
  25. Niedbala, M. J., Crickard, K., Bernacki, R. Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. Exp. Cell Res. 160, 499-513 (1985).
  26. White, E. A., Kenny, H. A., Lengyel, E. Three-Dimensional modeling of ovarian cancer. Adv. Drug Deliv. Rev. 79-80, 184-192 (2014).
  27. Kenny, H. A., et al. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nature Comm. , (2015).
  28. Sawada, K., et al. c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res. 67, 1670-1680 (2007).
  29. Kenny, H. A., Lengyel, E. MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell cycle. 8, 683-688 (2009).
  30. Sawada, K., et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res. 68, 2329-2339 (2008).
  31. Mitra, A. K., et al. Ligand-independent activation of c-Met by fibronectin and α(5)β(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene. 30, 1566-1576 (2011).
check_url/fr/53541?article_type=t

Play Video

Citer Cet Article
Peters, P. N., Schryver, E. M., Lengyel, E., Kenny, H. Modeling the Early Steps of Ovarian Cancer Dissemination in an Organotypic Culture of the Human Peritoneal Cavity. J. Vis. Exp. (106), e53541, doi:10.3791/53541 (2015).

View Video