Summary

化学溶液沉积在硅外延大孔石英薄膜的制备

Published: December 21, 2015
doi:

Summary

A protocol is presented for the preparation of piezoelectric macroporous epitaxial films of quartz on silicon by solution chemistry using dip-coating and thermal treatments in air.

Abstract

This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr2+ act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth.

Introduction

当像α石英的压电材料被提交给一个电压偏置它经受机械变形。如果该材料是多孔的,这些量的变化可导致毛孔扩张或收缩,产生类似于可在活生物细胞器可以观察到一个响应系统1可变形多孔α-石英已制作使用微细加工,2,但这些技术还不能产生的3-D孔结构,和孔径为几百纳米的数量级上。结构的无定形二氧化硅的结晶受到阻碍而引起高表面能和建筑变形由于粗化和熔化不均匀成核。此外,由于各种形式的二氧化硅,都构建在极其稳定的SiO 4四面体网络中,形成无定形二氧化硅,α石英和其它 SiO 2多晶型物的自由能在一个宽的温度范围,马金几乎相等克它难以生产α-石英作为来自无定形二氧化硅凝胶的结晶的单一多晶型3的另一个方面,使更硬结构的无定形二氧化硅的控制的结晶是石英呈现出相对较慢的成核速率,但以极快的速度增长, 10-94纳米的报道/秒4,5慢速核加上快速增长往往会产生晶体比原来的纳米多孔结构,因此原来的形态丢失大得多。碱金属, Na +和Li +,已用于结晶α-石英,经常与水热处理组合。5,6-此外,的Ti 4+ / 组合物采用结晶二氧化硅的球形颗粒引入石英通过使用硅醇盐的软化学路线7然而,结构化的无定形二氧化硅膜进入石英的控制的结晶仍然是一个挑战。

<p class="“jove_content”">最近,锶,已经发现以催化在环境压力和相对较低的温度下的成核作用和结晶 SiO 2的生长。8,9-外延,起因于α石英和<100>的硅衬底之间的有利匹配,生产取向的压电薄膜。蒸发引起的自组装,以产生介孔二氧化硅膜已被用于自1999年10这种技术进行了研究并应用于多种模板剂的各种条件下,以产生可变的尺寸和中间相的孔隙。已经发现,在孔尺寸subnanometric变化对溶质扩散产生巨大影响,通过多孔系统11,验证这个广泛关注孔隙结构。而且,更容易了解内部二氧化硅孔系统可通过控制模板的胶束相而获得。12

这里,合成路径吨帽允许前所未有的控制使用一种新的相分离证实无定形二氧化硅层的厚度和孔径13这些薄膜在环境压力下的空气渗透有锶(II)盐并结晶成α-石英在1000℃。使用这种结晶过程的细孔径可保持被确定,并且壁厚和膜厚度的效果进行了研究。最后,压电和孔系统的变形进行了研究。

Protocol

1.准备溶胶制备预水解原硅酸四乙酯(TEOS)在通风橱中的凝胶膜,其中实验室天平和磁力搅拌器被放置的制备前一天的溶液。在这一步,整个协议穿白大褂,手套和护目镜。 在50ml烧杯中含有特氟隆涂层的磁力搅拌棒称量1.68克的CTAB,加入48.13毫升乙醇和3.00毫升的HCl的35%,覆盖烧杯用表面玻璃和搅拌,直至CTAB完全溶解。 添加7.37 ml的TEOS与烧杯滴加(以约1-2的速率每秒滴剂)?…

Representative Results

该材料合成的进程通过监测不同的方面进行控制。在浸涂工艺后可以观察的膜的方面中,衍射结构的绿色激光和扫描电子显微镜(SEM)在背散射电子模式 (图1A-B)中的图像的反射光点的最终外观。结晶过程后它记录的原子力显微镜(AFM)的地形图( 图1C),并通过该膜的X射线衍射得到的极点图,表明α-石英膜之间的外延关系(α-Q是…

Discussion

所提出的方法是一种自下而上的方式产生对大孔硅的石英片。相比生产的石英片的标准方法,一个顶向下的技术的基础上切割和大型水热生长的晶体抛光,在协议中所描述的方法允许获得薄得多薄膜150和450纳米之间的厚度,可与控制回避率。关于石英片厚度,压电响应的控制所有的实验细节文献报道的8.13。通过标准方法获得的石英膜的厚度不能小于10微米,对于大多数应用,这些都需要?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是部分被CELLULE科特布斯INSIS-CNRS(1D-RENOX),以ACG和西班牙政府(MAT2012-35324和PIE-201460I004)的PEPS项目资助。

Materials

Dip coater Nadetech  ND-DC 11/150 
Furnace Nabertherm  R 50/250/12
Atomic Force Microscope Agilent  5500 LS
Materials and Reagents 
Silicon wafers SHE Europe Ltd.
SrCl2·6H2O Aldrich 13909
CTAB Aldrich H5582
Ethanol Absolute  Aldrich 161086
HCl 35% solution PanReac 721019
TEOS Aldrich 131903

References

  1. Esser, A. T., Smith, K. C., Gowrishankar, T. R., Vasilkoski, Z., Weaver, J. C. Mechanisms for the intracellular manipulation of organelles by conventional electroportation. Biophys. J. 98 (11), 2506-2514 (2010).
  2. Stava, E., Yu, M., Shin, H. C., Shin, H., Kreft, D. J., Blick, R. H. Rapid fabrication and piezoelectric tuning of micro- and nanopores in single crystal quartz. Lab Chip. 13 (1), 156-160 (2013).
  3. Varshneya, A. K. . Fundamentals of Inorganic Glasses. , (1994).
  4. Christov, M., Kirov, G. C. The ratio of dissolving surface area/growing surface area in the hydrothermal growth of quartz. J. Cryst. Growth. 131 (3-4), 560-564 (1993).
  5. Bertone, J. F., Cizeron, J., Wahi, R. K., Bosworth, J. K., Colvin, V. L. Hydrothermal synthesis of quartz nanocrystals. Nano Lett. 3, 655-659 (2003).
  6. Jiang, Y., Brinker, C. J. Hydrothermal synthesis of monodisperse single-crystalline alpha-quartz nanospheres. Chem. Comm. 47 (26), 7524-7526 (2011).
  7. Okabayashi, M., Miyazaki, K., Kono, T., Tanaka, M., Toda, Y. Preparation of Spherical Particles with Quartz Single. Chem. Lett. 34 (1), 58-59 (2005).
  8. Carretero-Genevrier, A., et al. Soft-Chemistry-Based Routes to Epitaxial α-Quartz Thin Films with Tunable Textures. Science. 340 (6134), 827-831 (2013).
  9. Brinker, C. J., Clem, P. G. Quartz on Silicon. Science. 340 (6134), 818-819 (2013).
  10. Brinker, C. J., Lu, Y., Sellinger, A., Fan, H. Evaporation-Induced Self-Assembly: Nanostructures Made Easy. Adv. Mater. 11 (7), 579-585 (1999).
  11. Griffith, C. S., Sizgek, G. D., Sizgek, E., Scales, N., Yee, P. J., Luca, V. Mesoporous Zirconium Titanium Oxides. Part 1: Porosity Modulation and Adsorption Properties of Xerogels. Langmuir. 24 (21), 12312-12322 (2008).
  12. Lu, Y., et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature. 389 (6649), 364-368 (1997).
  13. Drisko, G. L., et al. Water-Induced Phase Separation Forming Macrostructured Epitaxial Quartz Films on Silicon. Adv. Funct. Mater. 24 (35), 5494-5502 (2014).
check_url/fr/53543?article_type=t

Play Video

Citer Cet Article
Carretero-Genevrier, A., Gich, M. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition. J. Vis. Exp. (106), e53543, doi:10.3791/53543 (2015).

View Video