Summary

高分辨率定量免疫膜受体在视网膜带状突触分析

Published: February 18, 2016
doi:

Summary

The postembedding immunogold method is one of the most effective ways to provide high-resolution analyses of the subcellular localization of specific molecules. Here we describe a protocol to quantitatively analyze glutamate receptors at retinal ribbon synapses.

Abstract

Retinal ganglion cells (RGCs) receive excitatory glutamatergic input from bipolar cells. Synaptic excitation of RGCs is mediated postsynaptically by NMDA receptors (NMDARs) and AMPA receptors (AMPARs). Physiological data have indicated that glutamate receptors at RGCs are expressed not only in postsynaptic but also in perisynaptic or extrasynaptic membrane compartments. However, precise anatomical locations for glutamate receptors at RGC synapses have not been determined. Although a high-resolution quantitative analysis of glutamate receptors at central synapses is widely employed, this approach has had only limited success in the retina. We developed a postembedding immunogold method for analysis of membrane receptors, making it possible to estimate the number, density and variability of these receptors at retinal ribbon synapses. Here we describe the tools, reagents, and the practical steps that are needed for: 1) successful preparation of retinal fixation, 2) freeze-substitution, 3) postembedding immunogold electron microscope (EM) immunocytochemistry and, 4) quantitative visualization of glutamate receptors at ribbon synapses.

Introduction

谷氨酸是在视网膜1中的主要兴奋性神经递质。视网膜神经节细胞(RGC)中,从双极电池 2接收的谷氨酸突触输入,是视网膜的输出神经元发送视觉信息到大脑。生理学研究表明,视网膜神经节细胞突触激励是通过NMDA受体(NMDA受体)和AMPA受体(的AMPARs)3,4,5突触后介导的。虽然在视网膜神经节细胞兴奋性突触后电流(EPSCS)通过的AMPARs NMDA受体和介导视网膜神经节细胞-1,3,5,6,7,8-,自发微型EPSCS(mEPSCs)只呈现一个的AMPARs介导的分量4,5,9。然而,减少摄取谷氨酸自发EPSCS 5透露出一股NMDA受体成分,这表明在研资局树突NMDA受体可能位于兴奋性突触之外。膜相关鸟苷酸激酶(MAGUKs)如PSD-95该集群神经递质受体,包括谷氨酸盐受体和离子通道■在突触部位,也表现出明显的subsynaptic表达模式10,11,12,13,14。

近几十年来,共焦免疫组织化学和预嵌入型电子显微镜(EM)的免疫组化已被用于研究膜受体的表达。虽然共焦免疫染色揭示受体表达的宽图案,其较低的分辨率使得不可能使用来区分的亚细胞位置。在哺乳动物视网膜预嵌入-EM研究表明NMDA受体亚基存在于视锥双极细胞带状突触15,16,17突触后的元件。这是明显的对比,以生理学证据。然而,反应产物的扩散是在预嵌入免疫过氧化物酶方法的公知的构件。因此,这种方法通常不会给统计上可靠的数据和可以排除国产化的区分突触膜与膜突触外18,19,20,21。上另一方面,生理和解剖数据与的AMPARs对视网膜神经节细胞3,5,7,9,22突触定位相一致。因此,谷氨酸受体和MAGUKs在视网膜色带突触本地化不仅对突触后也给perisynaptic或突触外膜隔室。然而,仍然需要在视网膜色带突触这些膜蛋白的高分辨率定量分析。

在这里,我们开发了一种postembedding EM免疫技术检测​​NMDA受体亚基,AMPAR亚基和PSD-95接着在突触到大鼠视网膜神经节细胞估算这些蛋白的数量,密度和可变性的subsynaptic定位用霍乱毒素B亚基标记的(CTB)逆行追踪方法。

Protocol

保养和动物的处理均符合NIH动物护理和使用委员会的准则。产后天(P)15-21 SD大鼠,通过双边上丘用1-1.2%CTB注入,维持在12:12小时光照:黑暗周期。 1.视网膜组织固定组装以下材料和工具:解剖显微镜,2钳很细的技巧,剪刀,纤维素滤纸,塑料吸管和显微镜载玻片。 麻醉大鼠与2.0毫升氟烷(吸入剂麻醉剂)的密闭室。确定由这些方法适当麻醉:缺少脚趾捏?…

Representative Results

此处呈现的结果表明对大鼠视网膜RGC树突GluA 2/3的显着的不同subsynaptic本地化模式和NMDA受体,如先前24,25说明。在RGC树突型材GluA 2/3免疫颗粒的77%分别位于所述PSD(图1A)内,类似于大多数中央突触。然而,NMDA受体都位于突触两种或extrasynaptically。 GluN2A免疫颗粒的83%在PSD分别定位(图1C,2A,2B),优先在关突触,而金颗粒更?…

Discussion

我们已经描述了四种技术对于成功的定量后包埋免疫EM:1)短和弱固定,2)冷冻取代,3)后包埋免疫染色,以及4)定量。

EM免疫允许在超薄组织切片的特定蛋白质的检测。标记有金颗粒的抗体可以用EM直接可视化。而在检测细胞膜受体的subsynaptic本地化功能强大,EM免疫可以技术上具有挑战性,并要求组织固定和加工方法严谨的优化。

罢工膜的完整性和…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是由神经疾病与中风国家研究所(NINDS)和国立耳聋与其他交流障碍(NIDCD),美国国立卫生研究院(NIH)的校内方案的支持。我们感谢NINDS EM设施和援助NIDCD先进的成像核心(代号#ZIC DC 000081-03)。

Materials

Paraformaldehyde EMS 15710
Glutarldehyde EMS 16019
NaH2PO4 Sigma S9638
Na2HPO4 Sigma 7782-85-6
CaCl2 Sigma C-8106
BSA Sigma A-7030
Triton X-100 Sigma T-8787
NaOH Sigma 221465
NaN3 JT Baker V015-05
Glycerol Gibco BRL 15514-011
Lowicryl HM 20 Polysciences 15924-1
Tris-Base Fisher BP151-500
Tris Fisher 04997-100
Anti-GluN2A Millipore AB1555P Dilution 1/50
Anti-GluN2B Millipore AB1557P Dilution 1/30
Anti-GluA2/3 Millipore AB1506 Dilution 1/30
Anti-PSD-95 Millipore MA1–046 Dilution 1/100
Donkey anti-rabbit IgG-10 nm gold particles EMS 25704 Dilution 1/20
Donkey anti-mouse IgG-10 nm gold particles EMS 25814 Dilution 1/20
Donkey anti-mouse IgG-5 nm gold particles EMS 25812 Dilution 1/20
Donkey anti-goat IgG-18 nm gold particles Jackson ImmunoResearch 705-215-147 Dilution 1/20
Formvar-Carbon coated nickel-slot grids. EMS FCF2010-Ni
Uranyl acetate EMS 22400-1
Methanol EMS 67-56-1
Lead citrate Leica
Leica EM AFS Leica
Leica EM CPC Leica
Ultromicrotome Leica
JEOL 1200 EM JEOL
liquid nitrogen  Roberts Oxygen
Propane Roberts Oxygen
CTB List Biological Laboratories 104 1-1.2%
Anti-CTB List Biological Laboratories 703 Dilution 1/4000

References

  1. Copenhagen, D. R., Jahr, C. E. Release of endogenous excitatory amino acids from turtle photoreceptors. Nature. 341, 536-539 (1989).
  2. Wässle, H., Boycott, B. B. Functional architecture of the mammalian retina. Physiol. Rev. 71, 447-480 (1991).
  3. Mittman, S., Taylor, W. R., Copenhagen, D. R. Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells. J. Physiol. 428, 175-197 (1990).
  4. Matsui, K., Hosoi, N., Tachibana, M. Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J. Neurosci. 18, 4500-4510 (1998).
  5. Chen, S., Diamond, J. S. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J. Neurosci. 22, 2165-2173 (2002).
  6. Diamond, J. S., Copenhagen, D. R. The contribution of NMDA and non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells. Neuron. 11, 725-738 (1993).
  7. Lukasiewicz, P. D., Wilson, J. A., Lawrence, J. E. AMPA-preferring receptors mediate excitatory synaptic inputs to retinal ganglion cells. J. Neurophysiol. 77, 57-64 (1997).
  8. Higgs, M. H., Lukasiewicz, P. D. Glutamate uptake limits synaptic excitation of retinal ganglion cells. J. Neurosci. 19, 3691-3700 (1999).
  9. Taylor, W. R., Chen, E., Copenhagen, D. R. Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells. J. Physiol. 486, 207-221 (1995).
  10. Kennedy, M. B. Origin of PDZ (DHR, GLGF) domains. Trends. Biochem. Sci. 20, 350 (1995).
  11. Kim, E., Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771-781 (2004).
  12. Migaud, M., et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature. 396, 433-439 (1998).
  13. Aoki, C., et al. Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102, and SAP-97 at postsynaptic, presynaptic, and nonsynaptic sites of adult and neonatal rat visual cortex. Synapse. 40, 239-257 (2001).
  14. Davies, C., Tingley, D., Kachar, B., Wenthold, R. J., Petralia, R. S. Distribution of members of the PSD-95 family of MAGUK proteins at the synaptic region of inner and outer hair cells of the guinea pig cochlea. Synapse. 40, 258-268 (2001).
  15. Hartveit, E., Brandstätter, J. H., Sassoè-Pognetto, M., Laurie, D. J., Seeburg, P. H., Wässle, H. Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina. J. Comp. Neurol. 348, 570-582 (1994).
  16. Fletcher, E. L., Hack, I., Brandstätter, J. H., Wässle, H. Synaptic localization of NMDA receptor subunits in the rat retina. J. Comp. Neurol. 420, 98-112 (2000).
  17. Pourcho, R. G., Qin, P., Goebel, D. J. Cellular and subcellular distribution of NMDA receptor subunit NR2B in the retina. J. Comp. Neurol. 433, 75-85 (2001).
  18. Ottersen, O. P., Landsend, A. S. Organization of glutamate receptors at the synapse. Eur. J. Neurosci. 9, 2219-2224 (1997).
  19. Petralia, R. S., Wenthold, R. J., Ariano, M. A. Glutamate receptor antibodies: Production and immunocytochemistry. Receptor Localization: Laboratory Methods and Procedures. , 46-74 (1998).
  20. Petralia, R. S., Wenthold, R. J. Immunocytochemistry of NMDA receptors. Methods. Mol. Biol. 128, 73-92 (1999).
  21. Nusser, Z. AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr. Opin. Neurobiol. 10, 337-341 (2000).
  22. Qin, P., Pourcho, R. G. Localization of AMPA-selective glutamate receptor subunits in the cat retina: a light- and electron-microscopic study. Vis. Neurosci. 16, 169-177 (1999).
  23. Zhang, J., Wang, H. H., Yang, C. Y. Synaptic organization of GABAergic amacrine cells in salamander retina. Visual. Neurosci. 21, 817-825 (2004).
  24. Zhang, J., Diamond, J. S. Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina. J. Comp. Neurol. 498, 810-820 (2006).
  25. Zhang, J., Diamond, J. S. Subunit- and Pathway-Specific Localization of NMDA Receptors and Scaffolding Proteins at Ganglion Cell Synapses in Rat Retina. J. Neurosci. 29, 4274-4286 (2009).
  26. Peters, A., Palay, S., Webster, H. . The fine structure of the nervous system: neurons and their supporting cells, 3rd ed. , (1991).
  27. Baude, A., Nusser, Z., Roberts, J. D. B. The metabotropic glutamate receptor (mGluR1) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron. 11, 771-787 (1993).
  28. Van Lookeren Campagne, M., Oestreicher, A. B., van der Krift, T. P., Gispen, W. H., Verkleij, A. J. Freeze-substitution and Lowicryl HM20 embedding of fixed rat brain: Suitability for immunogold ultrastructural localization of neural antigens. J. Hist. Cyt. 39, 1267-1279 (1991).
  29. Matsubara, A., Laake, J. H., Davanger, S., Usami, S., Ottersen, O. P. Organization of AMPA receptor subunits at a glutamate synapse: A quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J. Neurosci. 16, 4457-4467 (1996).
  30. Petralia, R. S., et al. Organization of NMDA receptors at extrasynaptic locations. Neurosciences. 167, 68-87 (2010).
  31. Merighi, A., Polak, J. M., Priestley, J. V. Post-embedding electron microscopic immunocytochemistry. Electron Microscopic Immunocytochemistry: Principles and Practice. , 51-87 (1992).
  32. Ottersen, O. P., Takumi, Y., Matsubara, A., Landsend, A. S., Laake, J. H., Usami, S. Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Prog. Neurobiol. 54, 127-148 (1998).
  33. Nusser, Z., Lujan, R., Laube, G., Roberts, J. D., Molnar, E., Somogyi, P. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron. 21, 545-559 (1998).
  34. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E., Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618-624 (1999).
  35. Grimes, W. N., et al. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold. J. Neurophysiol. 114, 341-353 (2015).
  36. Sassoe-Pognetto, M., Ottersen, O. P. Organization of ionotropic glutamate receptors at dendrodendritic synapses in the rat olfactory bulb. J. Neurosci. 20, 2192-2201 (2000).
check_url/fr/53547?article_type=t

Play Video

Citer Cet Article
Zhang, J., Petralia, R. S., Wang, Y., Diamond, J. S. High-Resolution Quantitative Immunogold Analysis of Membrane Receptors at Retinal Ribbon Synapses. J. Vis. Exp. (108), e53547, doi:10.3791/53547 (2016).

View Video