Summary

紧凑的镜头少数字全息显微镜的MEMS检测与表征

Published: July 05, 2016
doi:

Summary

我们提出了一个小巧的反射全息数字化系统(CDHM)MEMS器件的检测和鉴定。论证采用发散输入波提供自然几何放大倍率的镜头,无设计。静态和动态的研究介绍。

Abstract

A micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive. However, effective inspection and characterization metrology systems are needed to ensure the functional reliability of MEMS. This study presents a system based on digital holography as a tool for MEMS metrology. Digital holography has gained increasing attention in the past 20 years. With the fast development and decreasing cost of sensor arrays, resolution of such systems has increased broadening potential applications. Thus, it has attracted attention from both research and industry sides as a potential reliable tool for industrial metrology. Indeed, by recording the interference pattern between an object beam (which contains sample height information) and a reference beam on a CCD camera, one can retrieve the quantitative phase information of an object. However, most of digital holographic systems are bulky and thus not easy to implement on industry production lines. The novelty of the system presented is that it is lens-less and thus very compact. In this study, it is shown that the Compact Digital Holographic Microscope (CDHM) can be used to evaluate several characteristics typically consider as criteria in MEMS inspections. The surface profiles of MEMS in both static and dynamic conditions are presented. Comparison with AFM is investigated to validate the accuracy of the CDHM.

Introduction

微纳米物体的计量是为行业和研究人员具有重要意义。事实上,对象的小型化代表了光学测量了新的挑战。微机电系统(MEMS)通常定义了微型机电系统,并且通常包括组件,例如微传感器,微致动器,微电子和微结构。它已经发现,在不同的领域,如生物技术,医药,通信和传感1多种应用。近日,日益复杂以及测试对象的逐步小型化功能要求的适合表征技术的MEMS的发展。高通量制造这些复杂微系统的需要的先进在线测量技术的实施,量化特征参数和所造成的工艺条件2有关的缺陷。例如,几何参数的偏差在MEMS器件ETERS影响系统性能,并具有待表征。此外,行业需要高分辨率测量性能,如全三维(3D)测量,看,高成像分辨率的大场,并实时分析。因此,有必要保证可靠的质量控制和检验过程。此外,它需要测量系统是在生产线上容易地实现的,从而相对紧凑要在现有的基础设施安装。

全息,这是首次由的Gabor 3引入,是一种技术,它允许一个对象的全量化信息恢复通过记录一个参考和一个目的波到感光介质之间的干涉。在此过程中被称为记录,一个场的振幅,相位和偏振被存储在介质中。那么对象波场可以通过参考光束发送到我的恢复dium,被称为全息图的光学读取的处理。由于传统的探测器只记录了波的强度,全息一直很感兴趣的话题在过去五十年,因为它可以访问更多的信息的电场。然而,传统的全息几个方面让它不切实际的行业应用。实际上,感光材料是昂贵的并且在记录过程通常需要高度的稳定性。在高清晰度摄像机传感器的改进,如电荷耦合器件(CCD)已经开通的数字计量的新方法。其中的一个技术被称为数字全息4。在数字全息(DH)时,全息图记录在照相机(记录介质)上和数值的过程被用于重建的相位和强度信息。该记录和重建中所示连接 :与常规全息,可以经过两个主要方法获得的结果古尔1。然而,如果记录是类似于常规全息,重建是唯一的数值5。数值重建过程示于图2中 。两个程序都参与了重建过程。首先,对象波场从所述全息图检索。全息图被乘以一数值基准波得到在全息图平面的物体波前。其次,复合对象的波阵面进行了数值传播到图像平面。在我们的系统中,采用卷积方法6进行此步骤。得到的重建场是一个复杂的函数,因而相位和强度可以被提取提供感兴趣对象上的定量高度信息。全场信息存储在全息方法的能力,并利用计算机技术进行快速的数据处理提供了实验配置更多的灵活性和显著增加SPEE实验过程的研发,开辟新的可能性,开发署作为MEMS和微系统7,8动态计量工具。

相衬成像的数字全息现在是公认的和十几年前9首次提出。事实上,通过组合数字全息和显微镜显微设备的调查已经在许多研究10,11,12,13进行。基于高相干性14和低相干1517的几个系统,以及不同类型的几何13,16 (线,偏轴,公共路径…)已提交。另外,在线路数字全息先前已经在MEMS器件18,19的表征使用。然而,这些系统通常是难以实现和笨重,使得它们不适合于工业应用。在这项研究中,我们提出了一种基于AXI关闭一个紧凑的,简单的和镜头自由制度s的数字全息能够为实时MEMS检测和表征。紧凑型数字全息显微镜(CDHM)是一个镜头少数字全息系统研发并获得专利,获得微镜面尺寸物体的三维形态。在我们的系统中,一个10毫瓦,高度稳定的,温度控制的二极管激光器在638纳米工作耦合到一个单模式光纤。正如图3所示,从光纤发出的发散光束被分成由一个光束分离器的基准和一个物体光束。参考光束路径包括一个倾斜的反射镜来实现离轴几何形状。物体光束被散射和被样品反射。两个光束干涉CCD上给予全息图。印到图像的干涉图案被称为空间载波并允许定量相位信息,只有一个图像的恢复。数值重建是使用一个共同的傅立叶变换和卷积算法作为站进行特德以前。镜头的更少的配置具有几个优点使它吸引力。由于没有透镜使用时,输入光束是发散波提供自然几何放大,从而提高了系统的分辨率。此外,它是自由在典型的光学系统中所遇到的像差。如可以在图3B中可以看到,该系统可以做得紧凑(55x75x125毫米3),轻量(400克),并且因此可以容易地集成到工业生产线。

Protocol

1.测量的前期准备注意:用于实验的样品是MEMS电极。金电极被制作用剥离工艺在硅晶片上。样品是18毫米×18毫米晶圆与周期性结构(电极)用1mM周期登录到日志使用该系统之前。 打开电脑,激光和翻译级功率。 放置在MEMS电极/微膜片样品。 放置在MEMS样品中使用镊子将样本保持器的中间。 调整样品架,以在光束路径中的电极的位置。的视图的最大测量场由?…

Representative Results

上述协议被设计来检查和表征使用CDHM系统MEMS和微型设备。在我们的系统中,单模式光纤耦合到二极管激光器在633纳米波长下操作。由于发散光束的配置,它向物体光束和参照光束路径匹配,以获得可被重构的全息图是很重要的。这是通过样品的相对于该系统小心垂直定位来实现的。在计算出的包裹相位图像,条纹的数目是通过改变系统高度位置降低到最低限度。它确保?…

Discussion

在这次审查中,我们提供了一个协议,通过紧凑的系统依靠数字全息精确地恢复不同的MEMS器件的定量形态。在静态和动态模式的MEMS表征证明。获得微通道的MEMS的定量3D数据。为了验证该系统的准确度,结果已在CDHM和原子力显微镜进行比较。良好的协议发现意味着数字全息可以是三维成像的可靠技术。结果表明,该系统能够10纳米的深度分辨率。此外,在微通道中获得的结果表明,该系统可在MEMS?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

2 MP Camera Imaging Source DMX 41BU02 used to record the hologram. 4.65 microns pixel size
Motorized X,Y,Z Translation Stage Zaber Technology  TLS28-M Holder for the system 
Beam splitter Edmund optics 49-003 Cube Beam splitter. Separate and recombine the object and reference beam
Laser  Micro Laser Systems, Inc. SRT-F635S-20/OSYS Diode laser
Mirror Edmund Optics #43-412-566 1" Dia. Protected Gold, λ/20 Flat Zerodur
monomode Fiber Thorlabs S405-XP Single Mode Optical Fiber, 400 – 680 nm, Ø125 µm Cladding
Sample holder Edmund Optics #39-930 Ideal Positioning Platform,±35mm Travel in Both X and Y
Hotplate Thermolyne Mirak hotplate Barnstead International HP72935-60 temperature range   40-370 °C
Holoscope Software d'Optron Pte Ltd NA software developed by the NTU researchers 

References

  1. Maluf, N. An introduction to Microelectromechanical Systems. Artech House. Boston (2002).
  2. Novak, E. MEMS metrology techniques. Proc. SPIE. 5716, 173 181 , doi:10.1117/12.596989 (2005).
  3. Gabor, D. A New Microscopic Principle. Nature. 161 (4098), 777 – 778 (1948).
  4. Schnars, U.,Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33 (2), 179 – 181 (1994).
  5. Schnars, U.,Jüptner, W. Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13 (9), R85 – R101 (2002).
  6. Pedrini, G., Schedin, S., Tiziani, H. Lensless digital holographic interferometry for the measurement of large objects. Opt. Commun. 171 (1-3), 29 – 36 (1999).
  7. Dubois, F., Joannes, L., Legros, J.C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38 (34), 7085 – 7094 (1999).
  8. Lei,X., Xiaoyuan, P., Jianmin, M., Asundi, A.K. Studies of digital microscopic holography with applications to microstructure testing. Appl. Opt. 40 (28), 5046 – 5051 (2001).
  9. Cuche, E., Bevilacqua, F., Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24 (5), 291-293 (1999).
  10. Qu,W.,Yu,Y.,Chee Oi,C.,Raj Singh,V.,Asundi,A., Quasi-physical phase compensation in digital holographic microscopy. J. Opt. Soc. Am. A26 (9), 2005 – 2011 (2009).
  11. Schedin, S., Pedrini, G., Tiziani, H. J., Santoyo, F.M. Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography. Appl. Opt. 38 (34), 7056-7062 (1999).
  12. Lei,X., Xiaoyuan, P., Jianmin, M., Asundi, A.K. Development and validation of digital microholo interferometric system for micromechanical testing. Proc. SPIE. 4778, 11-20 (2002).
  13. Qu, W., Bhattacharya, K., Choo, C.O., Yu, Y., Asundi, A. Transmission digital holographic microscopy based on a beam-splitter cube interferometer. Appl. Opt. 48 (15), 2778-2783 (2009).
  14. Potcoava, M. C., Kim, M. K. Fingerprint biometry applications of digital holography and low-coherence interferography. Appl. Opt. 48 (34), H9-H15 (2009).
  15. Kolman,P., Chmelìk, R. Coherence-controlled holographic microscope. Opt. Express. 18 (21), 21990-22003 (2010).
  16. Lee, M., Yaglidere, O., Ozcan, A. Field-portable reflection and transmission microscopy based on lensless holography. Biomed. Opt. Express. 2 (9), 2721-2730 (2011).
  17. Mico, V., Zalevsky, Z., Garcìa, J. Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution. Opt. Commun. 281 (17), 4273-4281 (2008).
  18. Singh, V.R., Miao, J., Wang, Z., Hedge, G.M., Asundi, A. Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography. Opt. Commun. 280 (2), 285-290 (2007).
  19. Singh, V.R., Anderi, A., Gorecki, C., Nieradko,L., Asundi, A. Characterization of MEMS cantilevers lensless digital holographic microscope. Proc. SPIE. 6995, 69950F-1 (2008).
  20. Schmidt, J.D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB.SPIE PRESS BOOK. (2010).
  21. Zhao, M., Huang, L., Zhang, Q.C., Su, X.Y., Asundi, A., Qian K.M. Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies. Appl. Opt. 50 (33), 6214-6224 (2011).
  22. Wang, Z., Qu, W., Yang, F., Wen, Y., Asundi, A. A new autofocus method based on angular spectrum method in digital holography. Proc. SPIE. 9449, 2-7 (2015).
check_url/fr/53630?article_type=t

Play Video

Citer Cet Article
Bourgade, T., Jianfei, S., Wang, Z., Elsa, R., Asundi, A. Compact Lens-less Digital Holographic Microscope for MEMS Inspection and Characterization. J. Vis. Exp. (113), e53630, doi:10.3791/53630 (2016).

View Video