Summary

마우스 뇌 조각 준비에서 발작 같은 활동의 직류 자극 및 다중 전극 배열 기록

Published: June 07, 2016
doi:

Summary

Studies have shown that cathodal transcranial direct-current stimulation can produce suppressive effects on drug-resistant seizures. In this study, an in vitro experimental setup was devised in which the direct-current stimulation and multielectrode array recording of seizure-like activity were evaluated in mice brain slice preparation. The direct-current stimulation parameters were evaluated.

Abstract

Cathodal 두개 직류 자극 (tDCS)의 약제 내성에 발작 억제 효과를 유도한다. 효율적인 동작을 수행하기 위해, 상기 자극 파라미터 (예를 들면, 방향 전계 강도와 자극 시간)을 마우스 뇌 슬라이스 제제에서 검사 될 필요가있다. 테스트 및 마우스 뇌 슬라이스의 위치에 전극의 상대적 배향을 정렬이 가능하다. 본 발명의 방법은 앞쪽에 cingulate 피질 발작 같은 활동에 대한 DCS의 효과를 평가하기 thalamocingulate 경로를 유지합니다. 다 채널 어레이 레코딩 결과 cathodal DCS 크게 -4- 아미노 피리딘과 bicuculline 유도 발작 같은 활성의 자극 – 유발 반응의 크기 및 지속 시간을 감소 것으로 나타났다. 이 연구는 또한 15 분에서 cathodal DCS 응용 프로그램이 thalamocingulate 경로에 장기 우울증의 원인 것으로 나타났습니다. 본 연구는 thalamocingulat에 ​​DCS의 효과를 조사전자 시냅스 가소성 및 급성 발작 같은 활동. 현재의 방법은 시험 관내 마우스 모델에서 방향 전계 강도와 자극 시간을 포함하여 최적의 자극 파라미터를 테스트 할 수있다. 또한,이 방법은 두 셀룰러 네트워크 레벨에서 대뇌 발작 같은 활동 DCS의 효과를 평가할 수있다.

Introduction

Epilepsy is a common neurological disorder. Thirty percent of patients with epilepsy suffer from drug-resistant seizures1. Transcranial direct-current stimulation (tDCS) provides a noninvasive approach to control or alter network activities across large brain areas, such as seizures. Clinical studies have shown that tDCS effectively treats intractable seizures2 and can produce both short- and long-term suppressive effects on seizures3-5. However, the therapeutic mechanism of tDCS actions is still unclear. The brain slice model presented is an in vitro method to investigate how the therapeutic mechanism of tDCS actions alters the symptoms of seizure-like brain activities. Accordingly, to achieve its optimal effects, specific stimulation parameters including orientation, field strength, and stimulation duration need to be tested in an experimental model. Previous studies have shown that the orientation of the electric field is important to obtain therapeutic effects6. Thus, testing and arranging the orientation of electrodes relative to the position of the tested brain slice are feasible.

Frontal lobe epilepsy and anterior cingulate cortex (ACC) seizures are often drug-resistant7,8. Some studies have reported the application of tDCS in the cingulate cortex9-11. tDCS is shown to affect vigilance, decision making and emotion through alteration of ACC activities, and can modulate neuronal excitability and seizure activity in this brain region12. Therefore, suppressive effects of tDCS on ACC seizures might be helpful for clinical treatment and the evaluation of alternative treatments.

The present protocol describes the preparation of an electrode in the recording chamber for DCS of a brain slice and its effect on seizure-like activity recording with a multielectrode array (MEA).

Protocol

동물의 과목을 포함하는 절차는 기관 동물 관리 및 활용위원회, 중앙 연구원, 타이페이, 대만에 의해 승인되었다. 1. 다중 전극 배열 녹화에 대한 실험 솔루션 및 장비 준비 인공 뇌척수액 (ACSF 준비 124 mM의 염화나트륨, 4.4 mM의 KCl을들을 1mM의 NaH를 2 95 % O 버블 PO 3, 2 mM의 황산, 2 mM의 CaCl2를 25 밀리미터의 NaHCO3 및 10 mM의 글루코오…

Representative Results

Thalamocingulate 조각과 MEA 녹화 시스템 설치 프로그램의 준비 생쥐에서 MT-ACC 슬라이스가 thalamocingulate 경로의 전기 생리 학적 특성을 탐구 할 수있는 특별한 제제 슬라이스이다.도 1a는 MT-ACC 슬라이스 제조 된 방식을 나타낸다. 마우스의 뇌를 신속하게 제거하고 (도 1A, A, B)의 차가운 ACSF 산소로 유지 하였…

Discussion

본 연구에서 ACC 간질 유사 활성에 DCS 기간 및 배향의 영향을 시험 하였다. 마우스 뇌 조각에서 안정적인 데이터를 얻으려면 어떻게 MT-ACC 경로의 무결성을 유지하고,이 각도 복부 상처와 피질의 지느러미를 잘라 만든되는, 특히 단계 핵심 손상을 방지 할 수 있습니다. 또한, 뇌 조각을 준비하는 시간은 신선하고 강한 뇌를 유지할 수 짧은 시간이어야 뇌 슬라이스의 활성에 영향을 미칠 수있다. 이전…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We are grateful for the technical support from the Neural Circuit Electrophysiology Core at Academia Sinica. This work was supported by the National Science Council (102-2320-B-001-026-MY3 and 100-2311-B-001-003-MY3) and Neuroscience Program of Academia Sinica.

Materials

Anesthetic:
Isoflurane Halocarbon Products Corporation  NDC 12164-002-25 4%
Name Company Catalog Number Comments
aCSF (total:1L):
D(+)-Glucose MERCK 1.08337.1000 10 mM
Sodium hydrogen carbonate MERCK 1.06329.0500 25 mM
Sodium chloride MERCK 1.06404.1000 124 mM
(+)-Sodium L-ascorbate, >=98% SIGMA A4034-100G 0.15 g / 2 c.c
Magnesium sulfate, anhydrous,ReagentPlus SIGMA M7506-500G 2 mM
Calcium chloride dihydrate MERCK 1.02382.1000 2 mM
Sodium dihydrogen phosphate monohydrate MERCK 1.06346.1000 1 mM
Potassium chloride May & Baker LTD Dagenham England MS 7616 4.4 mM
Name Company Catalog Number Comments
Drugs:
(+)-Bicuculline TOCRIS 0130 5 µM in aCSF
4-Aminopyridine TOCRIS 0940 250 µM in aCSF
Name Company Catalog Number Comments
Brain slice Preparation:
Vibratome Vibratome Series 1000 Block slicing into 500 µm thick slices
Name Company Catalog Number Comments
MEA system:
Multielectrode array (MEA) probes: 6 x 10 planar MEA Multi Channel Systems 60MEA500/30iR-Ti-pr MEAS 6×10 electrode diameter, 30 µm; electrode spacing, 500 µm; impedance, 50 kΩ at 200 Hz
Multielectrode array (MEA) probes: 8 x 8 MEA  Ayanda Biosystems 60MEA200/10iR-Ti-pr MEAS 8×8 pyramidal-shaped electrode; diameter, 40 µm; tip height, 50 µm; electrode spacing, 200 µm; impedance, 1000 kΩ at 200 Hz
A 60-channel amplifier was used with a band-pass filter set between 0.1 Hz and 3 KHz at 1200X amplification Multi-Channel Systems MEA-1060-BC
MC Rack software at a 10 KHz sampling rate Multi-Channel Systems Software for data collect and recordings
control of a pulse generator Multi-Channel Systems STG 1002
slice anchor kits and hold-downs Warner Instruments SHD-26H/10; WI64-0250
Peristaltic Pump-minipuls3 Gilsom MINIPULS3 perfusion rate : 8 ml/min
Name Company Catalog Number Comments
Stimulation system:
Isolated stimulator A-M Systems Model 2100 intensity of ±350 μA , duration of 200 μs
Tungsten electrode A-M Systems 575300 placed in thalamus

References

  1. Schiller, Y., Najjar, Y. Quantifying the response to antiepileptic drugs: effect of past treatment history. Neurology. 70 (1), 54-65 (2008).
  2. Fregni, F., et al. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia. 47 (2), 335-42 (2006).
  3. Auvichayapat, N., et al. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul. 6 (4), 696-700 (2013).
  4. Chung, M.G., and Lo, W.D. Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury. Arch Phys Med Rehabil. 96 (4 Suppl), S129-37 (2015).
  5. Del Felice, A., Magalini, A., Masiero, S. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool. Brain Stimul. 8 (3), 567-73 (2015).
  6. Garnett, E.O., Malyutina, S., Datta, A., den Ouden, D.B. On the Use of the Terms Anodal and Cathodal in High-Definition Transcranial Direct Current Stimulation: A Technical Note. Neuromodulation. (2015).
  7. Biraben, A., et al. Fear as the main feature of epileptic seizures. J. Neurol. Neurosurg. Psychiatry. 70 (2), 186-191 (2001).
  8. Zaatreh, M.M., et al. Frontal lobe tumoral epilepsy: clinical, neurophysiologic features and predictors of surgical outcome. Epilepsia. 43 (7), 727-733 (2002).
  9. Karim, A.A., et al. The truth about lying: inhibition of the anterior prefrontal cortex improves deceptive behavior. Cereb. Cortex. 20 (1), 205-213 (2010).
  10. Keeser, D., et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J. Neurosci. 31 (43), 15284-15293 (2011).
  11. Nelson, J.T., McKinley, R.A., Golob, E.J., Warm, J.S., Parasuraman, R. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage. 85 Pt 3, 909-917 (2014).
  12. Chang, W.P., Lu, H.C., Shyu, B.C. Treatment with direct-current stimulation against cingulate seizure-like activity induced by 4-aminopyridine and bicuculline in an in vitro mouse model. Exp. Neurol. 265, 180-192 (2015).
  13. Lee, C.M., Chang, W.C., Chang, K.B., Shyu, B.C. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs. Eur. J. Neurosci. 25 (9), 2847-2861 (2007).
  14. Chang, W.P., Shyu, B.C. Involvement of the thalamocingulate pathway in the regulation of cortical seizure activity. In: Recent Research Developments in Neuroscience. vol. 4. Pandalai, S.G., Ed., Kerala: Research Signpost, pp. 1-27 (2013).
  15. Brummer, S.B., Turner, M.J. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans. Biomed. Eng. 24(1), 59-63 (1977).
  16. Durand, D.M., Bikson, M. Suppression and control of epileptiform activity by electrical stimulation: a review. Proc. IEEE. 89 (7), 1065-1082 (2001).
  17. Fritsch, B., et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 66 (2), 198-204 (2010).
check_url/fr/53709?article_type=t

Play Video

Citer Cet Article
Lu, H., Chang, W., Chang, W., Shyu, B. Direct-current Stimulation and Multi-electrode Array Recording of Seizure-like Activity in Mice Brain Slice Preparation. J. Vis. Exp. (112), e53709, doi:10.3791/53709 (2016).

View Video