Summary

使用酶法,化学(甲基化)和物理(质谱,核磁共振)技术,植物墙Heteroxylans测序

Published: March 24, 2016
doi:

Summary

This protocol describes the specific techniques used for the structural characterization of reducing end (RE) and internal region glycosyl sequence(s) of heteroxylans by tagging the RE with 2 aminobenzamide prior to enzymatic (endoxylanase) hydrolysis and then analysis of the resultant oligosaccharides using mass spectrometry (MS) and nuclear magnetic resonance (NMR).

Abstract

这个协议描述了用于还原末端(RE)和heteroxylans的内部区域的糖基序列(多个)的表征的具体的技术。脱浆小麦胚乳细胞壁中分离作为不溶醇残基(AIR)1,并依次用水(W-溶胶星期五)萃取和含有1M的KOH 1%的NaBH 4(KOH溶胶星期五),为通过Ratnayake 描述 (2014)2。两种不同的方法( 见图1中的摘要)被采用。在第一,完整的W-溶胶AXS用2AB处理来标记原始RE主链糖残基,然后用木聚糖内切处理,以生成2AB标记的RE和内部区域分别还原的低聚糖,的混合物。在第二种方法中,所述KOH溶胶星期五与内木聚糖酶水解成第一生成其随后用2AB标记的寡糖的混合物。该酶解释放((UN)的标签)从两个低聚糖W-和KOH溶胶FRS然后甲基化并且两个天然和甲基化寡糖的详细的结构分析使用MALDI-TOF-MS,RP-HPLC-ESI-QTOF-MS和ESI-MS n的组合被执行。木聚糖内切消化的KOH溶胶AXS的特征还在于用核磁共振(NMR)也提供了关于异头配置信息。这些技术可以应用于其他类使用适当的内切水解酶多糖。

Introduction

Heteroxylans是属于禾本科的主壁和所有被子植物3-6的次生壁的主要非纤维素多糖多糖家族。木聚糖主链中它们的类型和与糖基(葡糖醛酸(中,GlcA),阿拉伯糖(阿拉伯糖))和非糖基(O-乙酰基,阿魏酸),这取决于组织类型,发育阶段和物种7个残基的取代的图案不同。

从小麦壁( 普通小麦 )胚乳组成主要由阿拉伯木聚糖(AXS)(70%)和(1→3)(1→4)-β-D-葡聚糖(20%)与少量的纤维素和heteromannans的(2%各)8。木聚糖主链可以是各种未取代的和主要的单取代的(主要是O-2位和在较小程度上O-3的位置)和二 – 取代的(O-2和O-3位)用α-L-阿拉˚F残留9。还原性末端(RE)异质从双子叶植物的木聚糖(例如, 拟南芥 )10和裸子植物(例如,云杉( 云杉 ))11包含一个特性四糖的糖基序列; -β-D-木糖 – (1→3)-α-L-鼠李糖 – (1→2)-α-D-半乳糖p A-(1→4)-D-的Xyl 。理解heteroxylan生物合成和功能(生物和工业),重要的是要充分序列木聚糖主链理解的种类和取代的模式以及还原端(RE)的序列。

用于还原端(RE)和heteroxylans的内部区域的糖基序列(多个)的结构特征的特定的技术在本手稿中描述。该技术依赖于荧光团标记(用2氨基苯甲酰胺(2AB))之前,酶(木聚糖内切)水解heteroxylan链的还原端(RE)。这种方法,特别是用于对RE测序,是首先由纽约实验室10,12-13报道,但现在扩展为包括内部区域测序,并且是已建立的技术的组合是同样适用于独立的隔离的源的所有heteroxylans。这种方法也可以使用(如果有的话),相应的内切水解酶应用于其他类多糖。

在本研究中,如所述脱浆小麦胚乳细胞壁中分离作为不溶醇残基(空气)中,依次用水(W-溶胶FR)萃取,含有1%的NaBH 4(KOH-溶胶FR)1M KOH在Ratnayake 等人。(2014)2。从两个W-和KOH溶胶FRS释放寡糖然后甲基化并且两个天然和甲基化寡糖的详细的结构分析使用MALDI-TOF-MS,ESI-QTOF-MS-加上HPLC用的组合进行使用RP C-18柱在线色谱分离和ESI-MSñ。木聚糖内切消化的KOH溶胶AXS还特征在于核磁共振(NMR)。

Protocol

W-溶胶AXS 1.还原性末端的标签(RE)糖残基与2-氨基苯甲酰胺(2AB) 在65℃孵育的W-溶胶AXS用在1M的NaBH 3 CN(氰基硼氢化钠)(pH5.5)中进行2小时的存在2AB(0.2M)到多糖主链链的还原末端转化成它们的荧光衍生物。 注意:以下步骤应在通风橱作为加入NaBH 3 CN释放有毒的氰化物气体,当它是在与水接触来进行。 称出的NaBH 3 CN(62.8毫克)和溶解于水(1毫升)…

Representative Results

的木聚糖内切消化2AB标记的W-溶胶AXS生成2AB标记的RE寡糖的混合物和一系列从木聚糖链( 图1中的内部区域衍生的未标记的(无2AB标签)寡糖;从Ratnayake 等人 。 2)。然后将一系列的色谱方法被用来分馏异构体的复杂混合物。最后,MS技术被用于识别异构结构,然后由质谱技术测序。这里,我们提出的代表,而不是该方法的全面的,例子。…

Discussion

大多数基质相细胞壁多糖似乎已经无规取代的主链(有两个糖基和非糖基残基),根据植物物种,发育阶段和组织类型3是高度可变的。由于多糖是次级基因产物的序列没有模板产生的,因此没有单一的分析方法,例如存在对于核酸和蛋白质,它们的测序。纯化的特定键的水解酶的可用性提供了一个有力的工具来降解多糖寡糖然后,可以是色谱分馏,和结合的化学和物理技术使用时完全测?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This project was supported by funds from Commonwealth Scientific and Research Organisation Flagship Collaborative Research Program, provided to the High Fibre Grains Cluster via the Food Futures Flagship. AB also acknowledges the support of an Australia Research Council (ARC) grant to the ARC Centre of Excellence in Plant Cell Walls (CE110001007).

Materials

2 aminobenzamide (2AB) Sigma-Aldrich (www.sigmaaldrich.com) A89804
sodium borohydride (NaBH4) Sigma-Aldrich (www.sigmaaldrich.com) 247677 Hazardous, handle with care
sodium cyanoborohydride (NaBH3CN) Sigma-Aldrich (www.sigmaaldrich.com) 156159 Hazardous, handle with care
endo-1,4-β-Xylanase M1 (from Trichoderma viride) (120101a) Megazyme (www.megazyme.com) E-XYTR1
Deuterium Oxide (D2O) Sigma-Aldrich (www.sigmaaldrich.com) 151882
Freeze dryer (CHRIST-ALPHA 1-4 LD plus)
RP C18 Zorbax eclipse plus column  Agilent  (2.1×100 mm; 1.8 µm bead size) 
MicroFlex MALDI-TOF MS   (Model – MicroFlex LR) (Bruker Daltonics, Germany)
(ESI) -(QTOF) MS   (Model # 6520) (Agilent, Palo Alto, CA )
ESI-MSn  - ion-trap  (Model # 1100 HCT) (Agilent, Palo Alto, CA).
Bruker Avance III 600 MHz -NMR Bruker Daltonics, Germany
Topspin (version 3.0)-Biospin- software  Bruker 
GC-MS (Model # 7890B) Agilent 

References

  1. Pettolino, F. A., Walsh, C., Fincher, G. B., Bacic, A. Determining the polysaccharide composition of plant cell walls. Nature Protocols. 7, 1590-1607 (2012).
  2. Ratnayake, S., Beahan, C. T., Callahan, D. L., Bacic, A. The reducing end sequence of wheat endosperm cell wall arabinoxylans. Carbohydr. Res. 386, 23-32 (2014).
  3. Bacic, A., Harris, P. J., Stone, B. A., Preiss, J. . The Biochemistry of Plants, Vol. 14, Carbohydrates. 14, 297-371 (1988).
  4. York, W. S., O’Neill, M. A. Biochemical control of xylan biosynthesis – which end is up?. Plant Biol. 11, 258-265 (2008).
  5. Fincher, G. B. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol. 149, 27-37 (2009).
  6. Faik, A. Xylan Biosynthesis: News from the Grass. Plant Physiol. 153, 396-402 (2010).
  7. Scheller, H. V., Ulskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263-289 (2010).
  8. Bacic, A., Stone, B. A (1→3)- and (1→4)-linked β-D-glucan in the endosperm cell-wall of wheat. Carbohydr. Res. 82 (13), 372-377 (1980).
  9. Comino, P., Collins, H., Lahnstein, J., Beahan, C., Gidley, M. J. Characterisation of soluble and insoluble cell wall fractions from rye, wheat and hull-less barley endosperm flours. Food Hydrocolloids. 41, 219-226 (2014).
  10. Pena, M. J., et al. Arabidopsis irregular xylem8 and irregular xylem9: Implicationsfor the Complexity of Glucuronoxylan Biosynthesis. Plant Cell. 19, 549-563 (2007).
  11. Andersson, S. I., Samuelson, O., Ishihara, M., Shimizu, K. Structure of the reducing end-groups in Spruce xylan. Carbohydr. Res. 111, 283-288 (1983).
  12. Mazumder, K., York, W. S. Structural analysis of arabinoxylans isolated from ball-milled switchgrass biomass. Carbohydr. Res. 345, 2183-2193 (2010).
  13. Kulkarni, A. R., et al. The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes. Glycobiol. 22 (2012), 439-451 (2012).
  14. . . Agilent MassHunter Workstation Software – Quantitative Analysis Familiarization Guide. , (2010).
  15. . . Topspin User Manual. , (2010).
  16. Domon, B., Costello, C. E. A systematic nomenclature for carbohydrate fragmentation in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate. J. 5, 397-409 (1988).
  17. Hoffmann, R. A., Leeflang, B. R., De Barse, M. M. J., Kamerling, J. P., Vliegenthart, J. F. Characterisation by 1H-n.m.r. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat, that contain the elements —-4)[alpha-L-Araf-(1—-3)]-beta-D-Xylp-(1—- or —-4)[alpha- L-Araf-(1—-2)][alpha-L-Araf-(1—-3)]-beta-D-Xylp-(1—-. Carbohydr. Res. 221, 63-81 (1991).
  18. Gruppen, H., Hoffmann, R. A., Kormelink, F. J. M., Voragen, A. G. J., Kamerling, J. P., Vliegenthart, J. F. Characterisation by 1H NMR spectroscopy of enzymically derived oligosaccharides from alkali-extractable wheat-flour arabinoxylan. Carbohydr. Res. 233, 45-64 (1992).
  19. Kosik, O., Bromley, J. R., Busse-Wicher, M., Zhang, Z., Dupree, P. Studies of enzymatic cleavage of cellulose using polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Methods Enzymol. 510, 51-67 (2012).
check_url/fr/53748?article_type=t

Play Video

Citer Cet Article
Ratnayake, S., Ford, K., Bacic, A. Sequencing of Plant Wall Heteroxylans Using Enzymic, Chemical (Methylation) and Physical (Mass Spectrometry, Nuclear Magnetic Resonance) Techniques. J. Vis. Exp. (109), e53748, doi:10.3791/53748 (2016).

View Video