Summary

A Whole Mount In Situ Hybridization Method for the Gastropod Mollusc Lymnaea stagnalis

Published: March 15, 2016
doi:

Summary

The goal of this protocol is to provide users with a set of methods for the high-throughput decapsulation of Lymnaea stagnalis embryos and larvae in preparation for whole mount in situ hybridization, and for subsequent pre- and post-hybridization treatments.

Abstract

Whole mount in situ hybridization (WMISH) is a technique that allows for the spatial resolution of nucleic acid molecules (often mRNAs) within a 'whole mount' tissue preparation, or developmental stage (such as an embryo or larva) of interest. WMISH is extremely powerful because it can significantly contribute to the functional characterization of complex metazoan genomes, a challenge that is becoming more of a bottleneck with the deluge of next generation sequence data. Despite the conceptual simplicity of the technique much time is often needed to optimize the various parameters inherent to WMISH experiments for novel model systems; subtle differences in the cellular and biochemical properties between tissue types and developmental stages mean that a single WMISH method may not be appropriate for all situations. We have developed a set of WMISH methods for the re-emerging gastropod model Lymnaea stagnalis that generate consistent and clear WMISH signals for a range of genes, and across all developmental stages. These methods include the assignment of larvae of unknown chronological age to an ontogenetic window, the efficient removal of embryos and larvae from their egg capsules, the application of an appropriate Proteinase-K treatment for each ontogenetic window, and hybridization, post-hybridization and immunodetection steps. These methods provide a foundation from which the resulting signal for a given RNA transcript can be further refined with probe specific adjustments (primarily probe concentration and hybridization temperature).

Introduction

Molluscs are a group of animals that hold the interest of a broad diversity of scientific disciplines. Despite their morphological diversity1, species richness (second only to the Arthropods in terms of species number2) and relevance to a wide range of commercial3, medical4 and scientific issues5-8, there are relatively few molluscan species that can claim to be both well-equipped scientific models and easy to maintain in a laboratory environment. One mollusc that is much used by disciplines such as neurobiology9, ecotoxicology10 and more recently evolutionary biology11,12, is Lymnaea stagnalis, primarily because of its widespread distribution and extreme ease of maintenance. Despite its popularity as a 'model' organism and its long history of use by developmental biologists13-19, the range and power of molecular tools available to the L. stagnalis scientific community lies far behind that of more traditional animal models (Drosophila, mouse, sea urchin, nematodes).

Our desire to develop Lymnaea as a molecular model stems from an interest in the molecular mechanisms that guide shell formation. This motivated us to refine a set of techniques that would allow for the efficient, consistent and sensitive visualization of gene expression during Lymnaea's development. Whole mount in situ hybridization (WMISH) is widely employed for a variety of model organisms and has been in use for more than 40 years 20. In its different guises, ISH can be employed to spatially localize specific loci on chromosomes, rRNA, mRNA and micro-RNAs.

One of the challenges we needed to address prior to refining a WMISH method for L. stagnalis was the issue of gently and efficiently extracting embryos and larvae of varying stages from the egg capsules in which they are deposited. This extraction, or 'decapsulation', needs to be achieved efficiently in order to collect adequate material for a given in situ experiment, while at the same time maintaining morphological and cellular integrity. While other model organisms also undergo encapsulated development, in our hands none of the methods reported for those species could be successfully employed in L. stagnalis.

The overall goals of this method are therefore: to extract L. stagnalis embryos and larvae from their capsules in a high-throughput fashion, to apply pre-hybridization treatments that optimize the WMISH signal, to prepare embryos and larvae with satisfactory WMISHsignals for imaging.

Protocol

NOTE: The following steps outline our method for conducting an in situ experiment on embryonic and larval stages of L. stagnalis. Where a step involves the use of a hazardous chemical this is indicated by the word 'CAUTION' and all appropriate safety procedures should be adopted. Links to representative MSDS sheets for hazardous chemicals are provided in Supplementary File 1. Recipes for all reagents are provided in Supplementary File 2. <p class="jove_title…

Representative Results

The representative WMISH staining patterns shown in Figure 3 were generated using the technique described above, and reflect a variety of spatial expression patterns for genes involved in a range of molecular processes ranging from shell formation (Novel gene 1, 2, 3 and 4), to cell-cell signaling (Dpp) to transcription regulation (Brachyury) across a range of developmental stages. While we have not quantified the expression levels of t…

Discussion

The method described here allows for the efficient visualization of RNA transcripts with presumably varying expression levels within all developmental stages of Lymnaea stagnalis. To remove embryos and larvae from their capsules we trialed a variety of chemical, osmotic shock and physical treatments reported for other encapsulated-developing model organisms. However, in our hands the method we describe here is the only high-throughput technique that removes the tough capsular membrane without damaging the embryo…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by funding to DJJ through DFG project #JA2108/2-1.

Materials

Featherweight forceps Ehlert & Partner #4181119
Silicon tubing Glasgerätebau OCHS GmbH 760070
Glass capillaries Hilgenberg 1403547
12 well tissue culture dishes Carl Roth CE55.1
37% Formaldehyde Carl Roth P733.1 CAUTION – May cause cancer. Toxic by inhalation, in contact with skin and if swallowed. Toxic: danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed.
Ethylenediamine tetraacetic acid Carl Roth CN06.3 CAUTION – CAUSES EYE IRRITATION. MAY CAUSE RESPIRATORY TRACT AND SKIN IRRITATION. Avoid breathing dust. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation
Magnesium Chloride Carl Roth 2189.1
Tween-20 Carl Roth 9127.1 CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Sodium Chloride Carl Roth 3957.1
Ficoll type 400 Carl Roth CN90.1
polyvinylpyrrolidone K30 (MW 40) Carl Roth 4607.1 CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Nuclease freeBovine Serum Albumin Carl Roth 8895.1
Salmon sperm Carl Roth 5434.2
Heparin Carl Roth 7692.1 CAUTION – ADVERSE EFFECTS INCLUDE HEMORRHAGE, LOCAL IRRITATION. POSSIBLE ALLERGIC REACTION IF INHALED, INGESTED/CONTACTED. EYES/SKIN/RESPIRATORY TRACT IRRITANT. POSSIBLE HYPERSENSITIZATION. DURING PREGNANCY HAS BEEN REPORTED TO INCREASE RISK OF STILLBIRTH
Proteinase-K Carl Roth 7528.1
Glycine Carl Roth 3790.2
Deionised formamide Carl Roth P040.1 CAUTION – Irritating to eyes and skin. May be harmful by inhalation, in contact with skin and if swallowed. May cause harm to the unborn child. Hygroscopic.
Standard formamide Carl Roth 6749.3 CAUTION – Irritating to eyes and skin. May be harmful by inhalation, in contact with skin and if swallowed. May cause harm to the unborn child. Hygroscopic.
Triethanolamine Carl Roth 6300.1 CAUTION – Avoid breathing vapor or mist. Avoid contact with eyes. Avoid prolonged or repeated contact with skin. Wash thoroughly after handling.
Acetic anhydride Carl Roth 4483.1 CAUTION – CAUSES SEVERE SKIN AND EYE BURNS. REACTS VIOLENTLY WITH WATER. HARMFUL IF SWALLOWED. VAPOR IRRITATING TO THE EYES AND RESPIRATORY TRACT
Maleic acid Carl Roth K304.2 CAUTION – Very hazardous in case of eye contact (irritant), of ingestion, . Hazardous in case of skin contact (irritant), of inhalation (lung irritant). Slightly hazardous in case of skin contact (permeator). Corrosive to eyes and skin.
Benzyl benzoate Sigma B6630-250ML CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. Harmful if swallowed.
Benzyl alcohol Sigma 10,800-6 CAUTION – Harmful if swallowed. Harmful if inhaled. Causes serious eye irritation.
Glycerol Carl Roth 3783.1
Blocking powder Roche 11096176001
Anti DIG Fab fragments AP conjugated Roche 11093274910
Tris-HCl Carl Roth 9090.3
4-Nitro blue tetrazolium chloride in dimethylformamide  Carl Roth 4421.3 CAUTION – May cause harm to the unborn child. Harmful by inhalation and in contact with skin. Irritating to eyes.
5-bromo-4-chloro-3-indolyl-phosphate Carl Roth A155.3 CAUTION – Potentially harmful if ingested. Do not get on skin, in eyes, or on clothing. Potential skin and eye irritant. 
N-acetyl cysteine Carl Roth 4126.1
Dithiothreitol Carl Roth 6908.1 CAUTION – May cause eye and skin irritation. May cause respiratory and digestive tract irritation. The toxicological properties of this material have not been fully investigated.
Tergitol Sigma NP40S CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Sodium dodecyl sulphate Carl Roth CN30.3 CAUTION – Harmful if swallowed. Toxic in contact with skin. Causes skin irritation. Causes serious eye damage. May cause respiratory irritation.
Potassium Chloride Carl Roth 6781.1
di-Sodium hydrogen phosphate dihydrate (Na2HPO4.2H2O) Carl Roth 4984.1
Potassium dihydrogen phosphate (KH2PO4) Carl Roth 3904.1
Tri sodium citrate dihydrate (C6H5Na3O7.2H2O) Carl Roth 3580.1 CAUTION – May cause eye, skin, and respiratory tract irritation. The toxicological properties of this material have not been fully investigated.
Mineral oil  Carl Roth HP50.2
InSituPro-Vsi  Intavis www.intavis.de/products/automated-ish-and-ihc

References

  1. Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature. 480 (7377), 364-367 (2011).
  2. Brusca, R. C., Brusca, G. J. . Invertebrates. , (2002).
  3. World Health Organization. Schistosomiasis: number of people treated in 2011. Week. Epi. Rec. 88, 81-88 (2013).
  4. Henry, J. Q., Collin, R., Perry, K. J. The slipper snail, Crepidula.: an emerging lophotrochozoan model system. Biol. Bull. 218 (3), 211-229 (2010).
  5. Perry, K. J., Henry, J. Q. CRISPR/Cas9-mediated genome modification in the mollusc, Crepidula fornicata. Genesis. 53 (2), 237-244 (2015).
  6. Kandel, E. R. The molecular biology of memory storage: a dialog between genes and synapses. Bio. Rep. 24, 475-522 (2004).
  7. Jackson, D. J., Ellemor, N., Degnan, B. M. Correlating gene expression with larval competence, and the effect of age and parentage on metamorphosis in the tropical abalone Haliotis asinina. Mar. Biol. 147, 681-697 (2005).
  8. Carter, C. J., Farrar, N., Carlone, R. L., Spencer, G. E. Developmental expression of a molluscan RXR and evidence for its novel, nongenomic role in growth cone guidance. Dev. Biol. 343 (1-2), 124-137 (2010).
  9. Rittschof, D., McClellan-Green, P. Molluscs as multidisciplinary models in environment toxicology. Mar. Pollut. Bull. 50 (4), 369-373 (2005).
  10. Liu, M. M., Davey, J. W., Jackson, D. J., Blaxter, M. L., Davison, A. A conserved set of maternal genes? Insights from a molluscan transcriptome. Int. J. Dev. Biol. 58 (6-8), 501-511 (2014).
  11. Hohagen, J., Herlitze, I., Jackson, D. J. An optimised whole mount in situ. hybridisation protocol for the mollusc Lymnaea stagnalis. BMC Dev. Biol. 15 (1), 19 (2015).
  12. Raven, C. P. The development of the egg of Limnaea stagnalis. L. from oviposition till first cleavage. Arch. Neth. J. Zool. 1 (4), 91-121 (1946).
  13. Raven, C. P. The development of the egg of Limnaea Stagnalis. L. from the first cleavage till the troghophore stage, with special reference to its’ chemical embryology. Arch. Neth. J. Zool. 1 (4), 353-434 (1946).
  14. Raven, C. P. Morphogenesis in Limnaea stagnalis. and its disturbance by lithium. J. Exp. Zool. 121 (1), 1-77 (1952).
  15. Raven, C. P. The nature and origin of the cortical morphogenetic field in Limnaea. Dev. Biol. 7, 130-143 (1963).
  16. Morrill, J. B., Blair, C. A., Larsen, W. J. Regulative development in the pulmonate gastropod, Lymnaea palustris., as determined by blastomere deletion experiments. J Exp Zool. 183 (1), (1973).
  17. Van Den Biggelaar, J. A. M. Timing of the phases of the cell cycle during the period of asynchronous division up to the 49-cell stage in Lymnaea. J. Emb. Exp. Morph. 26 (3), 367-391 (1971).
  18. Verdonk, N. H. Gene expression in early development of Lymnaea stagnalis. Dev. Biol. 35 (1), 29 (1973).
  19. Gall, J. G., Pardue, M. L. Formation and Detection of Rna-Dna Hybrid Molecules in Cytological Preparations. Proceedings Of The National Academy Of Sciences Of The United States Of America. 63 (2), 378-383 (1969).
  20. Iijima, M., Takeuchi, T., Sarashina, I., Endo, K. Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol. 218 (5), 237-251 (2008).
  21. Shimizu, K., Sarashina, I., Kagi, H., Endo, K. Possible functions of Dpp in gastropod shell formation and shell coiling. Dev Genes Evol. 221 (2), 59-68 (2011).
  22. Koop, D., Richards, G. S., Wanninger, A., Gunter, H. M., Degnan, B. M. D. The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Dev. Biol. 311 (1), 200-212 (2007).
  23. Lartillot, N., Lespinet, O., Vervoort, M., Adoutte, A. Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development. 129 (6), 1411-1421 (2002).
  24. Jackson, D. J., Wörheide, G., Degnan, B. M. Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol. Biol. 7 (1), 160 (2007).
  25. Jackson, D. J., Meyer, N. P., Seaver, E., Pang, K., McDougall, C., et al. Developmental expression of COE. across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Dev Genes Evol. 220, 221-234 (2010).
  26. Perry, K. J., Lyons, D. C., Truchado-Garcia, M., Fischer, A. H. L., Helfrich, L. W., et al. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc. Dev. Dyn. , (2015).
  27. Iijima, M., Takeuchi, T., Sarashina, I., Endo, K. Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol. 218 (5), 237-251 (2008).
  28. Shimizu, K., Iijima, M., Setiamarga, D. H. E., Sarashina, I., Kudoh, T., et al. Left-right asymmetric expression of dpp in the mantle of gastropods correlates with asymmetric shell coiling. EvoDevo. 4 (1), 15 (2013).
  29. Christodoulou, F., Raible, F., Tomer, R., Simakov, O., Trachana, K., et al. Ancient animal microRNAs and the evolution of tissue identity. Nature. 463, (2010).
  30. Koga, M., Kudoh, T., Hamada, Y., Watanabe, M., Kageura, H. A new triple staining method for double in situ hybridization in combination with cell lineage tracing in whole-mount Xenopus embryos. Dev Growth Differ. 49 (8), 635-645 (2007).
  31. Lauter, G., Söll, I., Hauptmann, G. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev. Biol. 11 (1), 43 (2011).
  32. Davison, A., Frend, H. T., Moray, C., Wheatley, H., Searle, L. J., Eichhorn, M. P. Mating behaviour in Lymnaea stagnalis. pond snails is a maternally inherited, lateralized trait. Biol. Lett. 5 (1), 20-22 (2009).
  33. Kuroda, R., Endo, B., Abe, M., Shimizu, M. Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature. 462 (7274), 790-794 (2009).
  34. Shibazaki, Y., Shimizu, M., Kuroda, R. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr. Biol. 14 (16), 1462-1467 (2004).
  35. Lu, T. Z., Feng, Z. P. A sodium leak current regulates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis. PLoS One. 6 (4), e18745 (2011).
  36. Dawson, T. F., Boone, A. N., Senatore, A., Piticaru, J., Thiyagalingam, S., et al. Gene Splicing of an Invertebrate Beta Subunit (LCav-beta) in the N-Terminal and HOOK Domains and Its Regulation of LCav1 and LCav2 Calcium Channels. PLoS ONE. 9 (4), e92941 (2014).
  37. Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature. 480 (7377), 364-367 (2011).
  38. Gregory, T. R., Nicol, J. A., Tamm, H., Kullman, B., Kullman, K., et al. Eukaryotic genome size databases. Nuc. Acids. Res. 35 (Database issue), D332-D338 (2007).
check_url/fr/53968?article_type=t

Play Video

Citer Cet Article
Jackson, D. J., Herlitze, I., Hohagen, J. A Whole Mount In Situ Hybridization Method for the Gastropod Mollusc Lymnaea stagnalis. J. Vis. Exp. (109), e53968, doi:10.3791/53968 (2016).

View Video