Summary

סליקה אופטית של מערכת העצבים המרכזית עכבר שימוש CLARITY הפסיבי

Published: June 30, 2016
doi:

Summary

Optical clearing techniques are revolutionizing the way tissues are visualized. In this report we describe modifications of the original Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) protocol that yields more consistent and less expensive results.

Abstract

Traditionally, tissue visualization has required that the tissue of interest be serially sectioned and imaged, subjecting each tissue section to unique non-linear deformations, dramatically hampering one’s ability to evaluate cellular morphology, distribution and connectivity in the central nervous system (CNS). However, optical clearing techniques are changing the way tissues are visualized. These approaches permit one to probe deeply into intact organ preparations, providing tremendous insight into the structural organization of tissues in health and disease. Techniques such as Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) achieve this goal by providing a matrix that binds important biomolecules while permitting light-scattering lipids to freely diffuse out. Lipid removal, followed by refractive index matching, renders the tissue transparent and readily imaged in 3 dimensions (3D). Nevertheless, the electrophoretic tissue clearing (ETC) used in the original CLARITY protocol can be challenging to implement successfully and the use of a proprietary refraction index matching solution makes it expensive to use the technique routinely. This report demonstrates the implementation of a simple and inexpensive optical clearing protocol that combines passive CLARITY for improved tissue integrity and 2,2′-thiodiethanol (TDE), a previously described refractive index matching solution.

Introduction

The ability to image complete neuroanatomical structures is immensely valuable for understanding the brain in health and disease. Traditionally, 3D imaging has required tissue sectioning to provide the axial resolution and to visualize deep anatomical structures. This approach can produce high-resolution data sets, but requires sophisticated image reconstruction techniques and is very labor intensive. As a result, it has been limited to the imaging of small volumes of tissue1-3. Optical sectioning, on the other hand, is well suited for the creation of high-resolution 3D images of fluorescently labeled tissues. Since optical sectioning is inherently three dimensional, it does not require extensive computation to produce a 3D image volume. However, light scattering and tissue opacity limit the depth at which tissues can be optically sectioned. The depth of imaging is limited to about 150 µm in laser scanning confocal microscopy and to less than 800 µm using two-photon excitation microscopy4-8.

In order to overcome these limitations, several optical clearing techniques have been recently developed and then further refined to permit the deep microscopic imaging of intact tissues. The use of benzyl alcohol and benzyl benzoate (BABB) to render fixed tissues transparent was among one of the earliest approaches9. However, this approach was limited by the quenching of fluorescence in the samples and incomplete clearing of highly myelinated structures10. Refinements of this technique, such as 3D Imaging of Solvent Cleared Organs (3DISCO), have led to very rapid and complete tissue clearing, but still suffer from rapid loss of fluorescent signals, especially yellow fluorescent protein (YFP)10. Water-based clearing solutions, such as Sca/e11 and SeeDB12, preserve fluorescent signals, but do not completely clear highly myelinated tissues. Clear, Unobstructed Brain Imaging Cocktails and Computational analysis (CUBIC) is a promising new optical clearing technology that appears to overcome the limitations of previously developed water-based clearing solutions13. In contrast with other optical clearing techniques, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY)14 embeds the brain in a porous matrix that provides structural integrity to proteins, nucleic acids and small molecules, while leaving lipids unbound. The lipids are then removed electrophoretically, culminating in an optically cleared brain that can be easily visualized and equally easily probed using commonly available techniques.

Electrophoretic tissue clearing (ETC) is used to remove lipids from hydrogel embedded tissues in CLARITY, however, ETC can be difficult to implement consistently and tissues subject to electrophoresis can exhibit tissue distortion, browning, loss of fluorescence and antibody reactivity. Passive lipid clearing avoids these limitations, but requires increased clearing times15-17. Passive clearing also permits the clearing of large numbers of samples in parallel, since it is not limited by the number of ETC apparatuses available. Decreasing the concentration of paraformaldehyde and excluding bis-acrylamide from the hydrogel have led to great increases in the speed of clearing at the expense of greater tissue expansion16. Less expensive alternatives to the refractive index matching solution used in the original CLARITY technique have been developed17-19. 2,2′-thiodiethanol (TDE) is an inexpensive and rapid brain clearing agent that reverses some of the tissue expansion that occurs during lipid removal18. This report incorporates passive clearing of hydrogel embedded tissue and the use of TDE as a refractive index matching solution to the original CLARITY technique to produce a highly reproducible and inexpensive protocol for the optical clearing of the mouse central nervous system.

Protocol

כל הניסויים בוצעו בהתאם טיפול בבעלי חיים מוסדיים ועדת שימוש (IACUC) הנחיות. Thy1-YFP, PLP-EGFP ו- PV-tdTomato עכברים ששימשו בניסויים אלה, אבל כל בעכברים המבטאים חלבוני ניאון ניתן לפנות בהצלחה צילמו. 1. רקמות הכנה <p class="jove_content" style=";text-align:right;direction:rtl…

Representative Results

לדמיין את המבנה הארגוני של המוח הוא קריטי להבנת איך מורפולוגיה וקישוריות להשפיע על תפקוד המוח בריאות ומחלות. טכניקות סליקה אופטיות מאפשרות אוכלוסיות תאי תמונת 3D ברקמות ללא פגע, מה שמאפשר לנו ללמוד מורפולוגיה וקישוריות cohesively. <p class="jove_content" fo:keep-toget…

Discussion

סליקה פסיבית של רקמות מוטבעות הידרוג'ל (CLARITY הפסיבי) היא שיטה פשוטה וזולה לניקוי חתיכות גדולות של רקמה. גישה זו אינה דורשת ציוד ייעודי וניתן לבצעו בקלות שייקר בקרת טמפרטורה. במשך תקופה של כמה שבועות, אפילו גדולים, רקמות myelinated ביותר, כגון המוח כולו או בחוט השדרה, יהפוך…

Divulgations

The authors have nothing to disclose.

Acknowledgements

עבודה זו נתמכה על בנדיבות על ידי המכונים הלאומיים לבריאות / המכון הלאומי להפרעות נוירולוגיות ושבץ (NIH / NINDS) מענק 1R01NS086981 וקרן הילטון קונרד נ. אנו מודים לד"ר לורן בן-טולילה וד"ר מתיו Schibler על עזרתם שלא יסולא בפז עם מיקרוסקופיה confocal. אנו מודים לאלה שתרמו בפורום CLARITY (http://forum.claritytechniques.org). אנחנו במיוחד להודות לד"ר קרל דייזרות עבור פתיחת המעבדה שלו ללמד טכניקה המרתק הזה. המחברים מודים על התמיכה הנדיבה של מינהל המחקר הרפואי למיפוי המוח, קרן תמיכה למיפוי המוח, פירסון-לאבלייס קרן, קרן Ahmanson, קרן הצדקה של חברות קפיטל גרופ, וויליאם מ ולינדה ר Dietel פילנתרופית קרן, קרן Northstar . מחקר מדווח בפרסום זה גם מומן בחלקו על ידי המרכז הלאומי למשאבי מחקר על ידי משרד המנהל של האומההמכונים אל הבריאות תחת מספרי הפרס C06RR012169, C06RR015431, ו S10OD011939. התוכן הוא באחריות בלעדית של הכותבים ולא בהכרח מייצג את הדעות הרשמיות של מכוני הבריאות הלאומיים.

Materials

10X phosphate buffered saline (PBS) Fisher BP399-1 buffers
32% paraformaldehyde (PFA) Electron Microscopy Sciences 15714-5 perfusion and hydrogel
2,2'-thiodiethanol (TDE) Sigma-Aldrich 166782-500G refractive index matching solution
40% acrylamide Bio-Rad 161-0140 hydrogel
2% bis-acrylamide Bio-Rad 161-0142 hydrogel
VA-044 initiator Wako Pure Chemical Industries, Ltd. VA044 hydrogel
boric acid Sigma-Aldrich B7901 clearing buffer
sodium dodecyl sulfate (SDS) Fisher BP166-5 clearing buffer
sodium hydroxide Fisher 55255-1 buffers
sodium azide Sigma-Aldrich 52002-100G preservative
triton x-100 Sigma-Aldrich X100-500G buffers
heparin Sigma-Aldrich H3393-50KU perfusion
sodium nitrate Fisher BP360-500 perfusion
DAPI Molecular Probes D1306 nuclear stain
99.9% isoflurane Phoenix 57319-559-06 anesthetic
hydrocholoric acid Fisher A1445-500 buffers
glass bottom dish Willco HBSB-5040 Willco dishes
reusable adhesive Bostick 371351 Blu-Tack
silicon elastomer World Precision Instruments KWIK-CAST Kwik-Cast
lint-free wipe Kimberly-Clark 34120 KimWipe
mouse brain matrix Roboz SA-2175 sectioning tissue
matrix blades Roboz RS-9887 sectioning tissue
peristaltic pump Cole-Parmer 77122-24 pefusion
laser scanning confocal microscope Leica SP5 microscopy
imaging software Leica LAS AF microscopy

References

  1. Micheva, K. D., Smith, S. J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron. 55, 25-36 (2007).
  2. Kleinfeld, D., et al. Large-scale automated histology in the pursuit of connectomes. J Neurosci. 31, 16125-16138 (2011).
  3. MacKenzie-Graham, A., et al. A multimodal, multidimensional atlas of the C57BL/6J mouse brain. J Anat. 204, 93-102 (2004).
  4. Denk, W., Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron. 18, 351-357 (1997).
  5. Denk, W., et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods. 54, 151-162 (1994).
  6. Zipfel, W. R., Williams, R. M., Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 21, 1369-1377 (2003).
  7. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods. 2, 932-940 (2005).
  8. Theer, P., Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci. Vis. 23, 3139-3149 (2006).
  9. Dodt, H. U., et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods. 4, 331-336 (2007).
  10. Erturk, A., et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 7, 1983-1995 (2012).
  11. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 14, 1481-1488 (2011).
  12. Ke, M. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 16, 1154-1161 (2013).
  13. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157, 726-739 (2014).
  14. Chung, K., et al. Structural and molecular interrogation of intact biological systems. Nature. 497, 332-337 (2013).
  15. Spence, R. D., et al. Bringing CLARITY to gray matter atrophy. Neuroimage. 101, 625-632 (2014).
  16. Tomer, R., Ye, L., Hsueh, B., Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. 9, 1682-1697 (2014).
  17. Yang, B., et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 158, 945-958 (2014).
  18. Costantini, I., et al. A versatile clearing agent for multi-modal brain imaging. Sci Rep. 5, 9808 (2015).
  19. Zheng, H., Rinaman, L. Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Struct Funct. , (2015).
  20. Parra, S. G., et al. Multiphoton microscopy of cleared mouse brain expressing YFP. J Vis Exp. (67), e3848 (2012).
  21. Weinger, J. G., et al. Two-photon imaging of cellular dynamics in the mouse spinal cord. J Viz Exp. (96), e52580 (2015).
  22. Hama, H., et al. ScaleS: an optical clearing palette for biological imaging. Nat Neurosci. 18, 1518-1529 (2015).
  23. Treweek, J. B., et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc. 10, 1860-1896 (2015).
check_url/fr/54025?article_type=t

Play Video

Citer Cet Article
Roberts, D. G., Johnsonbaugh, H. B., Spence, R. D., MacKenzie-Graham, A. Optical Clearing of the Mouse Central Nervous System Using Passive CLARITY. J. Vis. Exp. (112), e54025, doi:10.3791/54025 (2016).

View Video