Summary

用于访问视网膜下腔的另类和验证注射法<i>通过</i>一经巩膜后路

Published: December 07, 2016
doi:

Summary

Subretinal injections are the most common technique for delivering large therapeutic agents such as proteins and viral vectors to photoreceptors and the retinal pigment epithelium. An alternative method in mice that successfully targets the subretinal space with minimal collateral damage and fast recovery times is described here.

Abstract

视网膜下注射已在人类和啮齿类动物被成功地用于递送蛋白质的治疗性干预,抗病毒剂,以及细胞到具有直接暴露于光感受器和视网膜色素上皮细胞(RPE)的interphotoreceptor /视网膜下舱。纤维蛋白溶酶原的视网膜下注射,以及最近的临床前和临床试验已经证明递送病毒载体和干细胞的个体具有先进视网膜疾病的安全性和/或功效。视网膜疾病,特别是遗传性视网膜营养不良的小鼠模型,用于测试这些治疗是必不可少的。在啮齿类动物中最常见的注射程序是用小transcorneal或经巩膜切口用前路到视网膜。通过这种方法,注射针头穿透视网膜神经上皮层破坏底层RPE和插入可以轻松尼克镜头,引起晶状体混浊及无创意马减值准备NG。通过经巩膜访问视网膜下的空间,后路避免了这些问题:针穿过巩膜从视神经约为0.5毫米,没有视网膜渗透并避免破坏玻璃体。附带损害仅限于与焦点巩膜和一过性,浆液性视网膜脱离的影响有关。该方法的简单性最大限度地减少眼外伤,确保快速视网膜复位和恢复,并具有低故障率。视网膜和RPE的损害最小允许的疗效明确评估和治疗剂本身的直接影响。该原稿描述了一种新颖的视网膜下注射技术,可用于靶向病毒载体,药剂,干细胞或诱导的多能干细胞(iPS细胞),以在具有高效力,最小的损伤,快恢复小鼠的视网膜下间隙。

Introduction

视网膜下注射是递送细胞和病毒剂的小鼠的视网膜研究其对感光体和下面的视网膜色素上皮1,2-效果的主要手段。在小鼠中大多数视网膜下注射协议使用transcorneal或经巩膜注射部位前到赤道( 图1)。这种方法可能会导致在包括切口和透镜的所得混浊时,神经视网膜和虹膜,视网膜出血,大量视网膜脱离和持久的视网膜下水肿3-9的玻璃体,渗透的完整性的破坏固有的附带损害。实验操作必须以评价治疗性干预3,7,10,11的作用克服这些影响。本研究提供了一种避免这些并发症的后经巩膜注射方法的详细描述和验证,减少创伤和具有定位子的高成功率视网膜空间。

注射小鼠靶向视网膜下空间往往非常难以执行并且多数研究者遇到失败的尝试,其中该载体被递送到不正确的位置或有显著视网膜损伤,例如,在一个完整的视网膜脱离6的高频。眼睛从分析中排除,因为注射的并发症的数量一般不报道在小鼠研究中,但在我们自己的经验,并与其他研究者的讨论中,失败的注射次数可以是高达50%,并且变化依赖于经验和谁正在执行注射研究者的能力。注射的成功通常通过直接眼底成像和/或光学相干断层扫描(OCT)7,9评估。在小鼠高成功率视网膜下注射容易掌握的方法可以加速实验,减少特雷的临床前研究的成本atments视网膜疾病是在美国失明的主要原因。

后部,这里描述经巩膜视网膜下注射技术是从临床和临床前协议9,12的适应。在注射的小鼠进行的非侵入性诊断评估论证温和,高度本地化的破坏和缺乏额外的抵押镜头,视网膜和视网膜色素上皮的损伤。此外,以相对较少的实践中,实验者可以实现这些结果以高成功率(80 – 90%或更好),从而降低了与这类研究相关的成本。此过程可用于递送细胞,病毒,或药理学治疗干预到光感受器和/或视网膜色素上皮中的临床前研究,并轻松地评估实验介入。

Protocol

动物:野生型C57BL / 6J小鼠在加州大学洛杉矶分校(UCLA)育成。所有动物为11之间 – 周17岁,并包括雄性和雌性小鼠。所有小鼠群养,保持与食品和水随意 12:12光照/黑暗周期。所有实验均按照加州大学洛杉矶分校和视觉的研究协会和眼科声明在眼科和视觉研究使用动物的机构准则进行的。 注:所有的药物和注射剂是美国药典(USP)级。 1.手术准备麻醉小鼠以100毫克/千克氯…

Representative Results

后路经巩膜视网膜下注射了31健康的眼睛用0.3微升(N = 18),0.5微升(N = 8)和0.01%荧光素的1.0微升(N = 5)注射执行16个野生型小鼠。一只眼睛由于该防止结构和功能分析一个预先存在的角膜混浊排除注射。每次注射的眼睛是包括本报告。没有意外的视网膜脱离,检测也没有透镜切口,炎症反应,葡萄膜炎,或外科手术后的感染中观察到的任何眼睛的任何证据的神经视网?…

Discussion

视网膜下注射是选择的方法为病毒载体的递送和干细胞衍生的疗法用于操纵光感受器和在基础研究和临床治疗视网膜色素上皮。在患者中,视网膜下注射是通常用前巩膜通过用直接可视化的针进行在玻璃体,视网膜的后部芯玻璃体切割术及渗透。如同大多数玻璃体切割程序,是很常见的,除非眼睛已经晶状体过早发生白内障形成。在小鼠中,视网膜下注射传统上与巩膜前到视网膜,经常与透镜,?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We gratefully acknowledge support by the Harold and Pauline Price Chair in Ophthalmology and the Jules Stein Eye Institute to MBG, the NEI Core grant (EY00331-43) to SN. Research was supported in part by a generous gift from the Sakaria family to SN and MGB, and from an unrestricted grant from the Research to Prevent Blindness to the Department of Ophthalmology. We thank Charlotte Yiyi Wang at Berkeley School of Optometry for obtaining initial OCT images of subretinal injections.

Materials

Hamilton Model 62 RN SYR Hamilton 87942 Syringe x 1
Hamilton Needle 33G, 1.0", 20 DEG, point 3 (304 stainless steel) Hamilton 7803-05 Needles x 6
Vannas Curved Scissors Ted Pella, INC. 1347 5mm Blade
22.5 Degree Microsurgery Knife Wilson Ophthalmic Corp. 91204
Ketaject  Phoenix NDC 57319-609-02 Ketamine
Anased Lloyd Laboratories NDC 61311-482-10 Xylazine
Fluorescein 10% AK-Fluor Akorn NDC 17478-253-10 100mg/ml
0.9% Saline USP Hospira NDC 0409-4888-50 0.9% NaCl
Antibiotic Ointment Akorn NDC 17478-235-35 Ophthalmic
Water Circulating Pump Gaymar TP-500 T/Pump  P/N 07999-000
sd-OCT Bioptigen R-Series Commercial
Fundus Camera Phoenix Research Laboratories MICRON III
Tweezers Type 3 Ted Pella, INC. 5385-3SU
2.5% Phenylephrine Paragon BioTeck NDC 42702-102-15 Ophthalmic
IMARIS8 Bitplane Version 8.1.2
ImageJ NIH V1.8.0_77
Hypromellose 2.5% Goniovisc AX0401 Methylcellulose
Eye Drops (Rinse) Bausch & Lomb Saline Solution
Microscope Zeiss Stemi 2000 Microscope
Light source Fostec P/N 20520 Light source

References

  1. Garoon, R. B., Stout, J. T. Update on ocular gene therapy and advances in treatment of inherited retinal diseases and exudative macular degeneration. Curr Opin Ophthalmol. 27 (3), 268-273 (2016).
  2. Pierce, E. A., Bennett, J. The Status of RPE65 Gene Therapy Trials: Safety and Efficacy. Cold Spring Harb Perspect Med. 5 (9), a017285 (2015).
  3. Tolmachova, T., et al. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J Mol Med (Berl). 91 (7), 825-837 (2013).
  4. Nork, T. M., et al. Functional and anatomic consequences of subretinal dosing in the cynomolgus macaque. Arch Ophthalmol. 130 (1), 65-75 (2012).
  5. Ye, G. J., et al. Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia. Hum Gene Ther Clin Dev. , (2016).
  6. Qi, Y., et al. Trans-Corneal Subretinal Injection in Mice and Its Effect on the Function and Morphology of the Retina. PLoS One. 10 (8), e0136523 (2015).
  7. Engelhardt, M., et al. Functional and morphological analysis of the subretinal injection of retinal pigment epithelium cells. Vis Neurosci. 29 (2), 83-93 (2012).
  8. Lambert, N. G., et al. Subretinal AAV2.COMP-Ang1 suppresses choroidal neovascularization and vascular endothelial growth factor in a murine model of age-related macular degeneration. Exp Eye Res. 145, 248-257 (2016).
  9. Muhlfriedel, R., Michalakis, S., Garcia Garrido, M., Biel, M., Seeliger, M. W. Optimized technique for subretinal injections in mice. Methods Mol Biol. 935, 343-349 (2013).
  10. Nusinowitz, S., et al. Cortical visual function in the rd12 mouse model of Leber Congenital Amarousis (LCA) after gene replacement therapy to restore retinal function. Vision Res. 46 (22), 3926-3934 (2006).
  11. Huang, R., et al. Functional and morphological analysis of the subretinal injection of human retinal progenitor cells under Cyclosporin A treatment. Mol Vis. 20, 1271-1280 (2014).
  12. Maguire, A. M., et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 358 (21), 2240-2248 (2008).
  13. Ridder, W. . 3. r. d., Nusinowitz, S., Heckenlively, J. R. Causes of cataract development in anesthetized mice. Experimental Eye Research. 75 (3), 365-370 (2002).
  14. Ridder, W. H. 3. r. d., Nusinowitz, S. The visual evoked potential in the mouse–origins and response characteristics. Vision Res. 46 (6-7), 902-913 (2006).
  15. Matynia, A., et al. Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Experimental Eye Research. 105, 60-69 (2012).
  16. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682 (2012).
  17. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9 (7), 671-675 (2012).

Play Video

Citer Cet Article
Parikh, S., Le, A., Davenport, J., Gorin, M. B., Nusinowitz, S., Matynia, A. An Alternative and Validated Injection Method for Accessing the Subretinal Space via a Transcleral Posterior Approach. J. Vis. Exp. (118), e54808, doi:10.3791/54808 (2016).

View Video