Summary

誘導および定量化細胞老化するテクニック

Published: May 01, 2017
doi:

Summary

細胞老化、細胞周期停止の不可逆的な状態は、様々な細胞ストレスによって誘導することができます。ここでは、老化のマーカーを評価するために、細胞の老化や方法を誘導するためにプロトコルを記述します。

Abstract

細胞ストレスやダメージを受けて、増殖細胞は、細胞の老化と呼ばれる長期的な細胞周期停止の状態を開始し、特定のプログラムを、誘導することができます。老化細胞の蓄積は、生物加齢とし、in vitroでの継続的な培養を介して行われます。老化細胞は、胚発生、組織修復及び再生、腫瘍抑制、および老化を含む多くの生物学的プロセスに影響を与えます。老化細胞の顕著な特徴としては、増加した老化関連βガラクトシダーゼ活性(SA-β-GAL)が、これらに限定されません。 p16 INK4A、p53及びp21レベル。 γ-H2AXを含むDNA損傷のより高いレベル、。老化関連ヘテロクロマチン病巣(SAHF)の形成。及び老化関連分泌表現型(SASP)、炎症性サイトカインおよびシグナル伝達分子の数の分泌によって特徴付けられる現象の取得。ここでは、我々は両方の複製のためのプロトコルを記述し、培養細胞におけるDNA損傷誘発性老化。加えて、我々は、SA-β-galを、γ-H2AXおよびSAHF染色を含むいくつかの老化関連マーカーを使用して老化表現型を監視するため、および細胞周期調節およびSASP因子のタンパク質およびmRNAレベルを定量するための技術を強調する。これらの方法には様々なモデルや組織における老化の評価に適用することができます。

Introduction

半世紀以上前に、ヘイフリックらは、培養液中で増殖する方法を非形質転換細胞述べたが、時間が1しか有限期間のため。ヒト線維芽細胞の長期培養は、細胞が増殖を停止させました。しかし、彼らは代謝的に活性であったが、これは細胞の老化と呼ばれていました。老化は、腫瘍形成を阻害するために有益であることができるが、老化2、3で発生再生能力の損失に寄与すると考えられているとしても、有害であることができます。老化細胞は、4人間と胚発生、創傷治癒、組織修復、および年齢に関連した炎症2を含む生物学的プロセスの数に関与しているとして、組織に蓄積することが示されています。

培養中の細胞の継続的な継代は、リンクされている複製老化を誘導し、テロメア損耗とゲノム不安定性へ。 DNA損傷および癌遺伝子を含む種々の細胞ストレスも、老化3を引き起こす可能性があります。テロメア損耗以外の要因による老化は、多くの場合、ストレス誘導や早期老化と呼ばれ、一般のp16 INK4A / RB経路5に依存しています。増殖し、非形質転換細胞は、典型的には、形状のスピンドルに見えるが、老化細胞は、平坦な、大型形態および増加老化関連βガラクトシダーゼ活性(SA-β-GAL)( 図1および2)を含む特定の特性を有するものとして同定することができます。老化細胞はまた、γ-H2AX( 3)6、及び、潜在的に、老化関連ヘテロ病巣(SAHF)( 4)7を含む、DNA損傷マーカーを蓄積します。老化細胞は、Pを含む細胞周期調節因子の高いレベルを持っています 16(P16 INK4A)および/またはp21およびp53の( 5)8、9。また、最近のデータは、老化細胞は、炎症性サイトカインおよびケモカインの数を分泌することによって、非自律的な効果を有し得ることを示した老化関連分泌表現型(SASP)10と呼ばれます。このSASP現象は、一般に、細胞型への細胞タイプによって異なる場合があるが、それはインターロイキン6(IL-6)の増加によって実証される、IL-8、顆粒球マクロファージコロニー刺激因子(GM-CSF)、増殖 – 調整された癌遺伝子α(GRO-α)、およびGRO-β、とりわけ( 図6)。老化を誘導する特定のストレスまたは損傷はまた、分泌表現型11、12、13影響与え得ます。 SASPは、ELISA法またはサイトカイン/タンパク質アレイを用いて、分泌タンパク質のレベルを測定することによって検出することができますS = "外部参照"> 10、14。転写後機構がSASPタンパク質レベル11、15、16、17調節することができるが、mRNAレベルの変化はまた、多くの場合に検出することができます。これらの変更は、一般的に、より敏感とタンパク質レベルの測定より定量化するのが容易です。他の老化マーカーはまた、永続的なDNA損傷核フォーカス、老化(DNA-SCARS)18補強クロマチン変化と呼ばれるDNAセグメント、および様々な他のマーカー3、19、20を含め、評価することができます。

ここでは、SA-β-Galを、γ-H2AX、SAHF、およびタンパク質および老化のmRNAを含む、培養中の細胞に老化を誘導し、また老化のいくつかのマーカーを測定するための一般的な技術を記述しますNCE関連分子。

Protocol

1.複製老化を誘導融解低継代ヒト二倍体線維芽細胞( 例えば、WI-38およびIMR-90)または他の細胞株。 注記:ここでは、ヒト二倍体線維芽細胞を用いたが、これらのプロトコルは、内皮細胞、上皮細胞、又は間葉系幹細胞のような他の細胞型において老化を評価するために使用することができます。培養条件は、異なる成長率や成長条件に使用される異なる細胞タイプのた?…

Representative Results

図2から6は、SA-β-gal染色からの代表的結果を示します。 γ-H2AXとSAHFのための染色; p16 INK4A、P21、およびp53のタンパク質レベルの評価;そしてmRNAおよび老化関連分子のタンパク質レベル。増加したSA-β-gal染色は、複製およびDNA損傷誘導性の老化で生じます。また、老化で起こる形態学的変化を観察。細胞が増殖し、線維芽細胞のスピンドル外観に比?…

Discussion

ここでは、ヒト二倍体線維芽細胞を使用して複製し、DNA損傷誘発性老化のための方法を記載しています。加えて、種々の老化関連タンパク質のタンパク質およびmRNAレベルを定量するための技術が含まれ、ならびにSA-β-galのため及びDNA損傷マーカーγ-H2AXの染色します。多くの注意点は、インビボ 20 老化を特徴付けるために存在するが、これらのプロトコルは?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

この研究は、米国立衛生研究所の学内研究プログラム、アメリカ国立老化研究所によってサポートされていました。著者らはまた、批判的に原稿を読み取るための老化とKotb Abdelmohsenに関する多くの有用な議論のためにマイリアム・ゴロスプとKotb Abdelmohsenに感謝したいです。我々はまた、批判的に原稿を読み取るため、特にダグラス・ドルズン私たちの研究室のメンバーに感謝します。

Materials

16% Tris-glycine gels Invitrogen XP00160BOX
Acid-Phenol ChCl3 Ambion AM9720
Alexa-Fluor 568 goat anti-mouse antibody Invitrogen A11031 1:300 dilution
Cell lifters Corning Inc. 3008 Cell scraper
ECL anti-mouse HRP linked antibody Amersham NA931V
ECL Plus Western Blotting Substrate Pierce 32132 ECL
DAPI Molecular Probes MP01306 stock 5 mg/ml in dH2O
GAPDH antibody Santa Cruz sc-32233 1:1,000-5,000 dilution
GlycoBlue Ambion AM9515
Histone H3 dimethyl K9 monoclonal antibody Abcam 1220 1:500 dilution
Human IL-6 Quantikine ELISA assay R&D systems D6050
Human IL-8 Quantikine ELISA assay R&D systems D8000C
Human GROa Quantikine ELISA assay R&D systems DRG00
N-N-dimethylformamide  Sigma D4551 DMF
p16 monoclonal antibody BD Biosciences 51-1325gr 1:500 dilution
p21 monoclonal antibody Millipore 05-345 1:750 dilution
p53 monoclonal antibody Santa Cruz sc-126 1:500 dilution clone DO-1
phospho-H2AX (Ser139) FITC conjugate antibody Cell Signaling 9719 1:2000 dilution
POWER SYBR-green PCR master mix  Applied Biosystems 4367659
Pre-stained molecular weight markers Biorad 161-0374
ProLong Gold Antifade  Invitrogen P36930
PVDF membrane  Thermo Scientific 88518
Senescence b-Galactosidase Staining Kit Cell Signaling 9860
TRIzol Ambion/Life Tech 10296028

References

  1. Hayflick, L. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res. 37, 614-636 (1965).
  2. van Deursen, J. M. The role of senescent cells in ageing. Nature. 509 (7501), 439-446 (2014).
  3. Campisi, J., d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 8 (9), 729-740 (2007).
  4. Dimri, G., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 92, 9363-9367 (1995).
  5. Kuilman, T., Michaloglou, C., Mooi, W. J., Peeper, D. S. The essence of senescence. Genes Dev. 24 (22), 2463-2479 (2010).
  6. Pospelova, T. V., et al. Pseudo-DNA damage response in senescent cells. Cell Cycle. 8 (24), 4112-4118 (2009).
  7. Narita, M., et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113 (6), 703-716 (2003).
  8. Ben-Porath, I., Weinberg, R. A. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 37 (5), 961-976 (2005).
  9. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 120 (4), 513-522 (2005).
  10. Coppe, J. P., et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6 (12), 2853-2868 (2008).
  11. Tominaga-Yamanaka, K., et al. NF90 coordinately represses the senescence-associated secretory phenotype. Aging (Albany NY). 4 (10), 695-708 (2012).
  12. Wiley, C. D., et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 23 (2), 303-314 (2016).
  13. Hoare, M., et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 18 (9), 979-992 (2016).
  14. Rodier, F. Detection of the senescence-associated secretory phenotype (SASP). Methods Mol Biol. 965, 165-173 (2013).
  15. Srikantan, S., Marasa, B. S., Becker, K. G., Gorospe, M., Abdelmohsen, K. Paradoxical microRNAs: individual gene repressors, global translation enhancers. Cell Cycle. 10 (5), 751-759 (2011).
  16. Abdelmohsen, K., Gorospe, M. Noncoding RNA control of cellular senescence. Wiley Interdisciplinary Reviews: RNA. , (2015).
  17. Bhaumik, D., et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging. 1 (4), 402-411 (2009).
  18. Rodier, F., et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci. 124 (PT 1), 68-81 (2011).
  19. Bernardes de Jesus, B., Blasco, M. A. Assessing cell and organ senescence biomarkers. Circ Res. 111 (1), 97-109 (2012).
  20. Sharpless, N. E., Sherr, C. J. Forging a signature of in vivo senescence. Nat Rev Cancer. 15 (7), 397-408 (2015).
  21. Rubio, M. A., Kim, S. -. H., Campisi, J. Reversible Manipulation of Telomerase Expression and Telomere Length: implications for the ionizing radiation response and replicative senescence of human cells. J Biol Chem. 277 (32), 28609-28617 (2002).
  22. Chen, Q. M., Prowse, K. R., Tu, V. C., Purdom, S., Linskens, M. H. K. Uncoupling the Senescent Phenotype from Telomere Shortening in Hydrogen Peroxide-Treated Fibroblasts. Experimental Cell Research. 265 (2), 294-303 (2001).
  23. Dumont, P., et al. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med. 28 (3), 361-373 (2000).
  24. Roninson, I. B. Tumor Cell Senescence in Cancer Treatment. Recherche en cancérologie. 63 (11), 2705-2715 (2003).
  25. Nyunoya, T., et al. Cigarette Smoke Induces Cellular Senescence. J Respir Cell Mol Biol. 35 (6), 681-688 (2006).
  26. Bai, H., Gao, Y., Hoyle, D. L., Cheng, T., Wang, Z. Z. Suppression of Transforming Growth Factor-β Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived From Human Pluripotent Stem Cells. Stem Cells Transl Med. , (2016).
  27. Senturk, S., et al. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 52 (3), 966-974 (2010).
  28. Aird, K. M., Zhang, R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol. 965, 185-196 (2013).
  29. Pospelova, T. V., Chitikova, Z. V., Pospelov, V. A. An integrated approach for monitoring cell senescence. Methods Mol Biol. 965, 383-408 (2013).
  30. Di Micco, R., et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol. 13 (3), 292-302 (2011).
  31. Wright, W. E., Pereira-Smith, O. M., Shay, J. W. Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol. 9 (7), 3088-3092 (1989).
  32. Bursuker, I., Rhodes, J. M., Goldman, R. Beta-galactosidase–an indicator of the maturational stage of mouse and human mononuclear phagocytes. J Cell Physiol. 112 (3), 385-390 (1982).
  33. Kopp, H. G., Hooper, A. T., Shmelkov, S. V., Rafii, S. Beta-galactosidase staining on bone marrow. The osteoclast pitfall. Histol Histopathol. 22 (9), 971-976 (2007).
  34. Witkiewicz, A. K., Knudsen, K. E., Dicker, A. P., Knudsen, E. S. The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle. 10 (15), 2497-2503 (2011).
  35. Baker, D. J., et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 530 (7589), 184-189 (2016).
  36. Baker, D. J., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479 (7372), 232-236 (2011).
  37. Demaria, M., et al. An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Dev Cell. 31 (6), 722-733 (2014).
  38. Noren Hooten, N., et al. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell. 15 (3), 572-581 (2016).
  39. Barzilai, N., Crandall, J. P., Kritchevsky, S. B., Espeland, M. A. Metformin as a Tool to Target Aging. Cell Metab. 23 (6), 1060-1065 (2016).
  40. Foretz, M., Guigas, B., Bertrand, L., Pollak, M., Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20 (6), 953-966 (2014).
  41. Cahu, J., Sola, B. A sensitive method to quantify senescent cancer cells. J Vis Exp. (78), (2013).
  42. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J., Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 4 (12), 1798-1806 (2009).
  43. Noppe, G., et al. Rapid flow cytometric method for measuring senescence associated beta-galactosidase activity in human fibroblasts. Cytometry A. 75 (11), 910-916 (2009).
  44. Bassaneze, V., Miyakawa, A. A., Krieger, J. E. Chemiluminescent detection of senescence-associated beta galactosidase. Methods Mol Biol. 965, 157-163 (2013).
  45. Redon, C. E., et al. gamma-H2AX detection in peripheral blood lymphocytes, splenocytes, bone marrow, xenografts, and skin. Methods Mol Biol. 682, 249-270 (2011).
  46. Kosar, M., et al. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle. 10 (3), 457-468 (2011).
  47. Kennedy, A. L., et al. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci. Cell Div. 5, 16 (2010).
check_url/fr/55533?article_type=t

Play Video

Citer Cet Article
Noren Hooten, N., Evans, M. K. Techniques to Induce and Quantify Cellular Senescence. J. Vis. Exp. (123), e55533, doi:10.3791/55533 (2017).

View Video