Summary

Ottica pH quantificazione di intracellulare in Drosophila melanogaster anatomista Epithelia con pH indicatore fluorescente geneticamente codificato

Published: August 11, 2017
doi:

Summary

Trasporto ionico cellulare spesso può essere valutata attraverso il monitoraggio pH intracellulare (pHho). Geneticamente codificato indicatori di pH (GEpHIs) forniscono ottico quantificazione del pH intracellulare in cellule intatte. Questo protocollo dettaglia la quantificazione del pH intracellulare attraverso cellulare ex vivo live-immagini di tubuli malpighiani di Drosophila melanogaster con Bud, un pseudo-raziometrici geneticamente codificato indicatore di pH.

Abstract

Trasporto ionico epiteliale è vitale per omeostasi ionica sistemica così come manutenzione dei gradienti elettrochimici cellulari essenziali. PH intracellulare (pHio) è influenzato da molti trasportatori di ioni e quindi monitoraggio pHmi è uno strumento utile per la valutazione dell’attività di trasportatore. Moderno geneticamente codificato-indicatori di pH (GEpHIs) forniscono ottico quantificazione del pH in cellule intatte su scala cellulare e subcellulare. Questo protocollo descrive la quantificazione in tempo reale del pH cellulareho regolamento in tubuli malpighiani (MTs) di Drosophila melanogaster attraverso ex vivo live-immagini di Bud, una pseudo-raziometrici GEpHI con un pKun adatto per tenere traccia di variazioni di pH nel citosol. Estratto Mosca adulta MTs sono composte da sezioni morfologicamente e funzionalmente distinte del epithelia strato unicellulare e può servire come un modello accessibile e geneticamente trattabile per indagine di trasporto epiteliale. GEpHIs offrono parecchi vantaggi sopra le tinture fluorescenti convenzionali pH sensibili ed elettrodi iono-selettivi. GEpHIs possibile etichettare popolazioni distinte delle cellule, purché gli elementi appropriati promotore sono disponibili. Questa marcatura è particolarmente utile nelle ex vivo, in vivoe in situ preparati, che sono intrinsecamente eterogenei. GEpHIs consentono anche la quantificazione del pHi nei tessuti intatti nel tempo senza necessità di esternalizzazione di trattamento o tessuto di tintura ripetute. Lo svantaggio principale del GEpHIs corrente è la tendenza ad aggregare nelle inclusioni citosoliche in risposta al danno tissutale e costruire la sovra-espressione. Queste carenze, loro soluzioni e vantaggi che essi GEpHIs vengono illustrati nel presente protocollo attraverso la valutazione del trasporto di protoni (H+) basolateral nelle cellule principali e stellari funzionalmente distinte di estratti fly MTs. Le tecniche e l’analisi descritta sono facilmente adattabile ad un’ampia varietà di preparazioni di vertebrati e invertebrati, e la raffinatezza del dosaggio può essere scalata da laboratori intricato determinazione del flusso ionico attraverso specifici trasportatori didattici.

Introduction

L’obiettivo del presente protocollo è quello di descrivere la quantificazione del pH intracellulare (pHi) utilizzando un geneticamente codificato-indicatore di pH (GEpHI) e dimostrare come questo metodo può essere utilizzato per valutare basolaterale trasporto di H+ in un insetto di modello (D. melanogaster) struttura renale, l’anatomista (MT). MTs servire come gli organi escretori del moscerino della frutta e sono simili ai mammiferi nefrone in diversi aspetti chiave1. MTs sono disposti come 2 paia di tubuli (anteriori e posteriori) nel torace e l’addome della Mosca. Il tubo epiteliale unicellulare di ogni MT è composto di cellule principali metabolicamente attive con la clausola distinct apicale (luminal) e basolaterale (emocele) polarità come pure intercalate cellule stellate. MTs anteriore sono composti da 3 morfologicamente, funzionalmente, ed inerente allo sviluppo distinti segmenti, in particolare l’iniziale dilatati segmento e segmento di transizione secretiva segmento principale, che si unisce all’ uretere2. A livello cellulare trasporto trans-epiteliale ionico nel lumen è compiuto da una membrana plasmatica apicale del V-ATPasi3 e uno scambiatore di alcali-metallo/H+ , nonché un basolateral Na+-K+-ATPasi4, verso l’interno-raddrizzatore K+ canali5, Na+-driven Cl/HCO3 scambiatore (NDAE1)6e Na+-K+-2 Cl cotransporter (NKCC; Ncc69),7, mentre le cellule stellate mediano Cl e acqua di trasporto8,9. Questo sistema fisiologico complesso ma accessibile offre eccellenti opportunità per indagine dei meccanismi di trasporto di ioni endogeni quando combinato con i diversi set di strumenti genetici e comportamentali di Drosophila.

La spiegazione razionale per questo protocollo era di descrivere un sistema geneticamente malleabile per studiare il trasporto ionico epiteliale con un potenziale di integrazione da cella a comportamento e l’esportazione di strumenti ad altri sistemi di modello. Espressione di Bud10, un GEpHI derivato da una fusione di verde pH sensibili Super-eclittica pHluorin11,12 (SEpH) e rosso mCherry pH-insensibile13, in MTs permette quantificazione di trasporto H+ in celluli MT attraverso la tecnica di calibrazione /nigericin alta K+14. Come molti trasportatori di ioni spostano equivalenti di H+ , quantificazione del pH intracellulare funge da rappresentazione funzionale del movimento di ioni attraverso una varietà di trasportatori. Il sistema di modello di Drosophila MT offre anche potenti strumenti genetici in tessuto-specifico transgene15 ed espressione di RNA interferenza (RNAi)16 , che può essere combinato con imaging cellulare e intero-organo saggi17 , 18 , 19 della funzione del tubulo per creare un robusto set di strumenti con integrazione verticale da molecole di comportamento. Questo è in contrasto con molti altri protocolli per la valutazione biologia epiteliale, come storicamente tali misure hanno contato su intricati e scoraggiante micro-dissezione, sofisticato elettrodi iono-selettivi20,21, e costosi pH sensibili coloranti22 con richieste di caricamento restrittive e scarsa specificità cellulare nei tessuti eterogenei. GEpHIs sono stati utilizzati estesamente misurare pHsono in una varietà di tipi di cella23. Primi lavori sfruttati la pH-sensibilità intrinseca di verde fluorescente Protein (GFP) per monitorare il pH in cellule epiteliali coltivate24 , ma negli ultimi due decenni hanno visto GEpHIs utilizzato in neuroni25, glia26, funghi27 , e pianta cellule28. La combinazione del potenziale per il targeting cellulari di costrutti genetici attraverso il sistema di espressione GAL4/UAS15 e l’accessibilità al fisiologico della drosofila MT rendono questo una preparazione ideale per indagini di pHho regolamento e trasporto ionico epiteliale.

regolazione del pH è stato studiato per decenni ed è vitale alla vita. La preparazione di MT offre un modello affidabile per insegnare la fisiologia della regolazione del pHho ma anche eseguire sofisticate indagini di pHi regolamento ex vivo e in vivo. Questo protocollo descrive la quantificazione del movimento H+ attraverso la membrana basolaterale delle cellule epiteliali di Drosophila MT utilizzando il NH4caricamento tecnica21acido di impulso di Cl, ma come l’indicatore di pH è geneticamente codificato, questi metodi e loro quadro teorico può essere applicati a qualsiasi preparazione suscettibili di transgenesi e live-imaging.

Protocol

Tutti i punti in questo protocollo conformi alle linee guida uso animale Mayo Clinic (Rochester, MN). 1. allevamento di volare Vola di rilancio e insieme traverse secondo standard allevamento29.Nota: Espressione di reporter fluorescente dal sistema GAL4/UAS è proporzionale alla temperatura e quindi allevamento temperatura può essere regolata per modificare il livello di espressione. Mentre i livelli di espressione alta conducono spesso ad un migliore rap…

Representative Results

Tessuti sani e un’adeguata identificazione del MTs anteriore sono vitali per il successo del presente protocollo. Durante la dissezione, dovrebbe prestare attenzione a non direttamente tocco il MTs e maniglia unica loro dall’uretere come la MTs di presa direttamente porterà alla rottura (Figura 4A– B). Quando MTs sono spazzate piatta sulla diapositiva, i tubuli devono essere toccati il meno possibile e movimento in eccess…

Discussion

Il successo di quantificazione del pHsono de Drosophila MTs dipende interamente sulla salute degli estratti MTs e la qualità del montaggio e la dissezione (Figura A C). Così, la gestione attenta del tessuto come descritto è imperativa. Diapositive appena rivestiti in PLL sostanzialmente aiuti MT di montaggio, come essi tendono ad essere molto più adesivo di diapositive che precedentemente sono stati esposti alla soluzione. Montaggio attenzio…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato supportato da NIH DK092408 e DK100227 al fabbricante AJR è stata sostenuta da T32-DK007013. Gli autori desiderano ringraziare Dr. Julian A.T. Dow per la carosso-GAL4 e c724-GAL4 scorte di Drosophila . Ringraziamo anche Jacob B. Anderson per assistenza mantenendo sperimentale croci volare.

Materials

Poly-L-Lysine Solution Sigma-Aldrich P4832 Store at 4 °C, can be reused.
Nigericin Sodium Salt Sigma-Aldrich N7143 CAUTION: Handle with gloves. Store as aliquots of 20 mM stock solution in DMSO at 4 °C.
Adhesive Perfusion Chamber Covers, adhesive size 1 mm, chamber diameter × thickness 9 mm × 0.9 mm, ports diameter 1.5 mm Sigma-Aldrich GBL622105 Can be substituted as needed to match perfusion system.
Sylgard 184 Silicone Elastomer Kit Ellsworth Adhesives 184 SIL ELAST KIT 0.5KG Available from multiple vendors.
Helping Hands Soldering Stands Harbor Freight Tools 60501 Available from multiple vendors.
Open Gravity-fed Perfusion System with Valve Controller, 8 to 1 Manifold and Reserviors Bioscience Tools PS-8S Any comparable perfusion system can be used.
Flow Regulator Warner Instruments 64-0221 Can be substituted as needed to match perfusion system.
Schneider's Medium Fisher Scientific 21720024 Store at 4 °C in sterile aliquots.
#5 Inox Steel Forceps Fine Science Tools 11252-20 Can be substituted based on experimenter comfort.
35 mm x 10 mm polystyrene Petri dish Corning Life Sciences Fisher Scientific 08-757-100A Exact brand and size are unimportant.
75 x 25 mm Microscope Slides Corning Life Sciences 2949-75X25 Exact brand and size can vary as long as perfusion wells are compatible.
Filimented Borosilicate Capillary Glass, ID 1.5 mm, OD 0.86 mm, thickness 0.32 mm Warner Instruments 64-0796 Filiment not necessary, glass can be substituted to match perfusion tubing and perfusion wells.
Tygon Tubing, ID 1/16 inch, OD 1/8 inch, thickness 1/32 inch Fisher Scientific 14-171-129 Available from multiple vendors, can be substituted to match perfusion system.
Vacuum Silicone Grease Sigma-Aldrich Z273554 Available from multiple vendors.
Plastic Flow Control Clamp Fisher Scientific 05-869 Available from multiple vendors, sterility not required
Glass rods, 5 mm diameter delphiglass.com 9198 Exact size is personal preference, multiple vendors available
PAP Hydrophobic Pen Sigma-Aldrich Z377821 Available from multiple vendors.
Sealing Film Sigma-Aldrich P7668 Available from multiple vendors.
15 mL Falcon tube BD Falcon 352096 Available from multiple vendors.
50 mL Falcon tube BD Falcon 352070 Available from multiple vendors.
HEPES; 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid Sigma-Aldrich H3375 Available from multiple vendors.
MES; 4-Morpholineethanesulfonic acid monohydrate Sigma-Aldrich 69892 Available from multiple vendors.
TAPS; N-[Tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid Sigma-Aldrich T5130 Available from multiple vendors.
10x/0.45 Air Objective Zeiss 000000-1063-139 Comparable objectives can be substituted. 40x objectives can be used for single cell imaging.
Dissecting Stereoscope Zeiss Discovery.V8 Any dissecting stereoscope can be used.
UAS-pHerry transgenic Drosophila melagnogaster Available from Romero Lab First published: Citation 10
capaR-GAL4 driver line Drosophila melagnogaster Available from Romero Lab First published: Citation 32
c724-GAL4 driver line Drosophila melagnogaster Available from Romero Lab First published: Citation 2
Monochromatic High Sensitivity Digital Camera Zeiss Axiocam 506 mono Exact brand and model can vary, can be replaced with any monochromatic high-sensitivity camera suited to live cellular imaging.
GFP/FITC filter set, 470/40 nm ex., 515 nm longpass em., 500 nm dichroic Chroma CZ909 Any GFP/FITC filer set can be substituted.
RFP/TRITC filter set, 546/10 nm ex., 590 nm longpass em., 565 nm dichroic Chroma CZ915 Any GFP/FITC filer set can be substituted.
Inverted Epifluoescent Microscope Zeiss Axio Observer Z.1 Any comparable microscope with motorized filter switching can be used. Upright microscopes can be used with open perfusion baths and water-immersion objectives.
Statistical Analysis Software Microcal Origin 6.0 Any software with comparable functionality can be substituted
Image Analysis Software National Institutes of Health ImageJ 1.50i Any software with comparable functionality can be substituted
Image Acquisition Software Zeiss Zen 1.1.2.0 Any software with comparable functionality can be substituted
Single-edged Carbon Steel Razor Blade Electron Microscopy Sciences 71960 Available from multiple vendors.
Microscopy Slide Folder Fisher Scientific 16-04 Available from multiple vendors.
Bunsen Burner Fisher Scientific 50-110-1231 Available from multiple vendors.
Polystrene Drosophila Rearing Vials with Flugs Genesee Scientific 32-109BF Comparable items can be substituted.
2.5 L Laboratory Ice Bucket Fisher Scientific 07-210-129 Available from multiple vendors.
NMDG; N-Methyl-D-glucamine Sigma-Aldrich M2004 Available from multiple vendors.
200 uL barrier pipette tips MidSci AV200 Available from multiple vendors.
200 uL variable volume pipette Gilson Incorporated PIPETMAN P200 Available from multiple vendors.

References

  1. Dow, J. A. T., Romero, M. F. Drosophila provides rapid modeling of renal development, function, and disease. Am J Physiol Renal Physiol. 299 (6), F1237-F1244 (2010).
  2. Sozen, M. A., Armstrong, J. D., Yang, M., Kaiser, K., Dow, J. A. Functional domains are specified to single-cell resolution in a Drosophila epithelium. P Natl Acad Sci USA. 94 (10), 5207-5212 (1997).
  3. Davies, S. A., et al. Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem. 271 (48), 30677-30684 (1996).
  4. Torrie, L. S., et al. Resolution of the insect ouabain paradox. P Natl Acad Sci USA. 101 (37), 13689-13693 (2004).
  5. Evans, J. M., Allan, A. K., Davies, S. A., Dow, J. A. Sulphonylurea sensitivity and enriched expression implicate inward rectifier K+ channels in Drosophila melanogaster renal function. J Exp Biol. 208 (Pt 19), 3771-3783 (2005).
  6. Sciortino, C. M., Shrode, L. D., Fletcher, B. R., Harte, P. J., Romero, M. F. Localization of endogenous and recombinant Na(+)-driven anion exchanger protein NDAE1 from Drosophila melanogaster. Am J Physiol Cell Physiol. 281 (2), C449-C463 (2001).
  7. Ianowski, J. P., O’Donnell, M. J. Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl- cotransport and Cl- conductance. J Exp Biol. 207 (Pt 15), 2599-2609 (2004).
  8. O’Donnell, M. J., et al. Hormonally controlled chloride movement across Drosophila tubules is via ion channels in stellate cells. Am J Physiol. 274 (4 Pt 2), R1039-R1049 (1998).
  9. Cabrero, P., et al. Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis. P Natl Acad Sci USA. 111 (39), 14301-14306 (2014).
  10. Rossano, A. J., Kato, A., Minard, K. I., Romero, M. F., Macleod, G. T. Na+ /H+ -exchange via the Drosophila vesicular glutamate transporter (DVGLUT) mediates activity-induced acid efflux from presynaptic terminals. J Physiol. 595 (3), 805-824 (2017).
  11. Sankaranarayanan, S., De Angelis, D., Rothman, J. E., Ryan, T. A. The use of pHluorins for optical measurements of presynaptic activity. Biophys J. 79 (4), 2199-2208 (2000).
  12. Miesenbock, G., De Angelis, D. A., Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 394 (6689), 192-195 (1998).
  13. Shaner, N. C., et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat biotechnol. 22 (12), 1567-1572 (2004).
  14. Thomas, J. A., Buchsbaum, R. N., Zimniak, A., Racker, E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochimie. 18 (11), 2210-2218 (1979).
  15. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  16. Dietzl, G., et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 448 (7150), 151 (2007).
  17. Dow, J. A., et al. The malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control. J Exp Biol. 197, 421-428 (1994).
  18. Hirata, T., et al. In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol. 303 (11), F1555-F1562 (2012).
  19. Schellinger, J. N., Rodan, A. R. Use of the Ramsay Assay to Measure Fluid Secretion and Ion Flux Rates in the Drosophila melanogaster Malpighian Tubule. J Vis Exp. (105), (2015).
  20. Caldwell, P. C. An investigation of the intracellular pH of crab muscle fibres by means of micro-glass and micro-tungsten electrodes. J Physiol. 126 (1), 169-180 (1954).
  21. Boron, W. F., De Weer, P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol. 67 (1), 91-112 (1976).
  22. Rink, T. J., Tsien, R. Y., Pozzan, T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 95 (1), 189-196 (1982).
  23. Bizzarri, R., Serresi, M., Luin, S., Beltram, F. Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem. 393 (4), 1107-1122 (2009).
  24. Kneen, M., Farinas, J., Li, Y., Verkman, A. S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J. 74 (3), 1591-1599 (1998).
  25. Raimondo, J. V., Irkle, A., Wefelmeyer, W., Newey, S. E., Akerman, C. J. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons. Front Mol Neurosci. 5, 68 (2012).
  26. Raimondo, J. V., et al. Tight Coupling of Astrocyte pH Dynamics to Epileptiform Activity Revealed by Genetically Encoded pH Sensors. J Neurosci. 36 (26), 7002-7013 (2016).
  27. Bagar, T., Altenbach, K., Read, N. D., Bencina, M. Live-Cell imaging and measurement of intracellular pH in filamentous fungi using a genetically encoded ratiometric probe. Eukaryot Cell. 8 (5), 703-712 (2009).
  28. Gjetting, K. S., Ytting, C. K., Schulz, A., Fuglsang, A. T. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J Exp Bot. 63 (8), 3207-3218 (2012).
  29. Greenspan, R. J. . Fly pushing: the theory and practice of Drosophila genetics. , (2004).
  30. Raimondo, J. V., et al. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system. Front Cell Neurosci. 7, 202 (2013).
  31. Koivusalo, M., et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol. 188 (4), 547-563 (2010).
  32. Terhzaz, S., et al. Mechanism and function of Drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor. PloS one. 7 (1), e29897 (2012).
  33. Boyarsky, G., Ganz, M. B., Sterzel, R. B., Boron, W. F. pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3. Am J Physiol. 255 (6 Pt 1), C844-C856 (1988).
  34. Chesler, M. The regulation and modulation of pH in the nervous system. Prog Neurobiol. 34 (5), 401-427 (1990).
  35. Rossano, A. J., Chouhan, A. K., Macleod, G. T. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo. J Physiol. 591 (7), 1691-1706 (2013).
  36. Roos, A., Boron, W. F. Intracellular pH. Physiol Rev. 61 (2), 296-434 (1981).
  37. Vaughan-Jones, R. D., Wu, M. L. pH dependence of intrinsic H+ buffering power in the sheep cardiac Purkinje fibre. J Physiol. 425, 429-448 (1990).
  38. Buckler, K. J., Vaughan-Jones, R. D., Peers, C., Nye, P. C. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat. J Physiol. 436, 107-129 (1991).
  39. Bevensee, M. O., Schwiening, C. J., Boron, W. F. Use of BCECF and propidium iodide to assess membrane integrity of acutely isolated CA1 neurons from rat hippocampus. J Neurosci Methods. 58 (1-2), 61-75 (1995).
  40. Arosio, D., et al. Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods. 7 (7), 516-518 (2010).
  41. Wu, Y., Baum, M., Huang, C. L., Rodan, A. R. Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am J Physiol Regul Integr Comp Physiol. 309 (7), R747-R756 (2015).
  42. Schulte, A., Lorenzen, I., Bottcher, M., Plieth, C. A novel fluorescent pH probe for expression in plants. Plant Methods. 2, 7 (2006).
  43. Shen, Y., Rosendale, M., Campbell, R. E., Perrais, D. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J Cell Biol. 207 (3), 419-432 (2014).
  44. Johnson, D. E., et al. Red fluorescent protein pH biosensor to detect concentrative nucleoside transport. J Biol Chem. 284 (31), 20499-20511 (2009).
  45. Mahon, M. J. pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv Biosci Biotechnol. 2 (3), 132-137 (2011).
  46. Li, Y., Tsien, R. W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci. 15 (7), 1047-1053 (2012).
  47. Tantama, M., Hung, Y. P., Yellen, G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc. 133 (26), 10034-10037 (2011).
  48. Matlashov, M. E., et al. Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochimica et biophysica acta. 1850 (11), 2318-2328 (2015).
  49. Kogure, T., et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat biotechnol. 24 (5), 577-581 (2006).
  50. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G., Tsien, R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. P Natl Acad Sci USA. 95 (12), 6803-6808 (1998).
  51. Poburko, D., Santo-Domingo, J., Demaurex, N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem. 286 (13), 11672-11684 (2011).
  52. Stornaiuolo, M., et al. KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and Golgi complex. Mol Biol Cell. 14 (3), 889-902 (2003).
  53. Makkerh, J. P., Dingwall, C., Laskey, R. A. Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr Biol. 6 (8), 1025-1027 (1996).
  54. Zacharias, D. A., Violin, J. D., Newton, A. C., Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 296 (5569), 913-916 (2002).
  55. McGuire, R. M., Silberg, J. J., Pereira, F. A., Raphael, R. M. Selective cell-surface labeling of the molecular motor protein prestin. Biochem Biophys Res Comm. 410 (1), 134-139 (2011).
check_url/fr/55698?article_type=t

Play Video

Citer Cet Article
Rossano, A. J., Romero, M. F. Optical Quantification of Intracellular pH in Drosophila melanogaster Malpighian Tubule Epithelia with a Fluorescent Genetically-encoded pH Indicator. J. Vis. Exp. (126), e55698, doi:10.3791/55698 (2017).

View Video