Summary

PIP-on-a-chip:蛋白质 - 磷酸肌醇相互作用的无标记研究

Published: July 27, 2017
doi:

Summary

我们在微流体平台的背景下提供支持的脂质双层,以使用基于pH调节的无标记方法研究蛋白质 – 磷酸肌醇相互作用。

Abstract

许多细胞蛋白质与膜表面相互作用以影响基本的细胞过程。这些相互作用可以针对膜内的特定脂质组分,如在磷酸肌醇(PIP)的情况下),以确保特定的亚细胞定位和/或活化。已广泛研究PIP和细胞PIP结合结构域以更好地了解其在细胞生理学中的作用。我们对支持的脂质双层(SLB)进行了pH调节测定,作为研究蛋白质-PIP相互作用的工具。在这些研究中,pH敏感的邻 –磺酰罗丹明B缀合的磷脂酰乙醇胺用于检测蛋白质-PIP相互作用。当蛋白质与含PIP的膜表面结合时,调节界面电位( 局部pH值的变化),使探针的质子化状态发生变化。通过使用磷脂酶C delta1 Pleckstr提出了pH调节测定的成功应用的案例研究在同源性(PLC-δ1PH)结构域和磷脂酰肌醇4,5-二磷酸(PI(4,5)P 2 )相互作用为例。这种相互作用的表观解离常数( K d,app )为0.39±0.05μM,类似于其他人获得的K d值。如前所述,PLC-δ1PH结构域是PI(4,5)P 2特异性,显示与磷脂酰肌醇4-磷酸的结合较弱,并且不与纯磷脂酰胆碱SLB结合。 PIP片上测定优于传统的PIP结合测定,包括但不限于低样品体积和无配体/受体标记要求,测试高和低亲和力膜相互作用的能力与小和大分子,提高信噪比。因此,PIP-on-a-chip方法的使用将有助于阐明各种膜相互作用的机制。此外,这种方法可能是你的确定调节蛋白质与膜相互作用的能力的治疗剂。

Introduction

无数的相互作用和生物化学过程发生在二维流体的膜表面上。真核细胞中的膜封闭的细胞器不仅在生物化学过程及其相关的蛋白质组学中而且在其脂质组成中是独特的。一类特殊的磷脂是磷酸肌醇(PIP)。即使它们包括只有1%的细胞脂质组的,它们在信号转导,自噬和膜运输至关重要的作用,其中包括1,2,3,4。通过细胞PIP激酶肌醇头部基团的磷酸化动态产生七个PIP头基是单- ,双- ,或三-磷酸化5。另外,PIP定义膜的亚细胞同一性,并且用作含有一种或多种磷酸苷酶的蛋白质/酶的专门的膜对接位点itide结合结构域,例如,pleckstrin同源(PH),PHOX同源性(PX),和底物蛋白N端同源性(ENTH)6,7。最好研究的PIP​​结合结构域之一是在高纳摩尔 – 低微摩尔范围亲和力8内与磷脂酰肌醇4,5-二磷酸(PI(4,5)P 2 )特异性相互作用的磷脂酶C(PLC)-δ1PH结构域,9,10,11。

已经开发了多种定性和定量的体外方法,用于研究这些相互作用的机制,热力学和特异性。在最常用的PIP结合测定中,表面等离子体共振(SPR),等温量热法(ITC),核磁共振(NMR)光谱,脂质体浮选/沉降测定和脂质印迹(脂肪印迹/ PIP条)12,13。即使这些被广泛使用,它们都具有许多缺点。例如,SPR,ITC,和NMR需要大量的样品,昂贵的仪器,和/或受过训练的人员12,13的。一些测定法形式,例如基于抗体的脂质的印迹利用的PIP的水可溶形式,并在非生理方式12,14,15,16呈现它们。此外,脂质印迹不能可靠定量,它们经常导致假阳性/阴性的观察12,17,18。为了克服这些挑战并改进当前的工具集,在上下文中基于支持的脂质双层(SLB)建立了一种新的无标记方法 icrofluidic平台,将其成功地应用于蛋白质-PIP相互作用的研究( 1)19。

用于检测蛋白质-PIP相互作用的策略是基于pH调节感测。这涉及一种pH敏感的染料,其具有直接与磷脂酰乙醇胺脂质头部组20缀合的邻 –磺酰罗丹明B( o SRB)。 o SRB-POPE探针( 图2A )在低pH下是高度荧光的,在高pH下淬灭,在7.5mol%含PI(4,5)P 2的SLB中具有约6.7的pKa( 图5B )。 PLC-δ1PH结构域已被广泛使用,用于验证蛋白质-PIP结合方法由于其对PI(4,5)P 2( 图5A)高特异性21,22“> 23,24,25 .Hence,我们的理由是,PLC-δ1PH结构域可以用来测试其结合至PI(4,5)P 2通过PIP-上的单芯片测定法。该PH结构域构建体在此研究中使用具有净正电荷(等电点8.4),并且因此吸引OH 离子( 图5C)在结合PI(4,5)P 2含SLBs中,PH结构域所带来的OH 离子的膜表面,这反过来又调制所述界面电势并转移öSRB-POPE( 5C)26,随着PH结构域浓度的函数,荧光被猝灭( 图6A)的质子化状态。最后,将归一化的数据是适合于结合等温线以确定PH结构域-P1(4,5)P 2相互作用的亲和力( 图6B6C )。/ P>

在这项研究中,提供了详细的方案,以在微流体平台内进行蛋白质结合含PIP的SLBs。该协议使读者将微流体装置和囊泡制备装配成SLB形成和蛋白质结合。此外,提供了用于提取PLC-δ1PH域-PI(4,5)P 2相互作用的亲和度信息的数据分析方向。

Protocol

1.清洁玻璃盖板稀释7倍的清洁溶液(参见材料表 )用100毫米深硼硅酸盐玻璃皿的去离子水将其稀释7倍,并将其在平板热板上加热至95℃,持续20分钟,或直到混浊溶液变澄清。 注意:解决方案将会很热,请注意避免身体受伤。 7x清洁溶液是[氧化 – (氧化(膦酰氧基)磷酰基]氧磷酰基]磷酸六钠,2-(2-丁氧基乙氧基)乙醇,1,4-双(2-乙基己氧基)-1,4-二氧代丁烷钠-2-磺酸?…

Representative Results

我们使用pH调节测定法研究了PIP-on-a-chip微器件中的PLC-δ1PH域-PI(4,5)P 2相互作用( 图1 )。通过详细的方案,我们演示了如何准备和组装微流体装置组件,制备小单层囊泡(SUV)( 图2 ),在装置内形成SLB( 图3 ),并测试蛋白质与含有PIP的SLB的结合。 图4中描绘了典型的SLB…

Discussion

每个PIP变体虽然浓度低,但存在于特定细胞器的细胞溶质表面,其中它们有助于建立独特的物理组成和细胞器膜1的功能特异性。一个的PIP的最重要的用途是作为一个特定的对接平台需要特定亚细胞定位和/或活化6,7蛋白质的众人。由于其在细胞生理学和疾病中的作用,在生理学相关的背景下研究体外蛋白质-PIP相互作用的能力是?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

部分支持DS和CEC的授权AI053531(NIAID,NIH); SS和PSC由授权N00014-14-1-0792(ONR)支持。

Materials

Coverslip
Glass Coverslips: Rectangles Fisher Scientific 12-544B 22 x 40 x 0.16 – 0.19 mm, No. 1 1/2; Borosilicate Glass
7X Cleaning Solution MP Biomedicals 976670 Detergent
PYREX Crystallizing Dish Corning 3140-190 Borosilicate glass dish with a flat bottom; Diameter x Height (190 x 100 mm); Distributor: VWR (89090-700)
Sentry Xpress 2.0 Paragon Industries SC-2 Kiln
Name Company Catalog Number Comments
PDMS
Sylgard 184 Silicone Elastomer Kit Dow Corning  4019862 Polydimethylsiloxane (PDMS); Distributor: Ellsworth Adhesives
PYREX Desiccator VWR 89134-402 Vacuum Rated
Biopsy punch Harris 15110-10 Harris Uni-Core; 1.0 mm diameter; Miltex Biopsy Punch with Plunger (Cat. No. 15110-10) can be used as an alternative
Name Company Catalog Number Comments
Device
Plasma Cleaning System PlasmaEtch PE25-JW 2-stage Direct Drive Oil Vacuum Pump, O2 service (Krytox Charged)
Digital Hot Plate Benchmark H3760-H Purchased through Denville Scientific (Cat. No. 1005640)
Frosted Micro Slides VWR 48312-003 Frosted, Selected, and Precleaned; Made of Swiss Glass; Thickness: 1 mm; Dimensions: 75 x 25 mm; GR 144
Name Company Catalog Number Comments
Mold
AutoCAD Autodesk v.2016 Drafting software for the photomask design
Photomask CAD/Art Services N/A Design with black background and clear features was printed at 20k dpi resolution on a transparent mask (5 x 7 in) by CAD/Art Services
Silicone Wafers University Wafer 1575 Prime Grade, Single Side Polished; 100 mm (4 inch) Diameter; 525 um Thickness
SU-8 50 MicroChem Corp. N/A Negative Tone Photoresist; Penn State Nanofabrication Facility Property
SU-8 Developer MicroChem Corp. N/A Penn State Nanofabrication Facility Property
Name Company Catalog Number Comments
SUV
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Avanti Polar Lipids 850457C POPC
L-α-phosphatidylinositol-4-phosphate Avanti Polar Lipids 840045X PI4P
L-α-phosphatidylinositol-4,5-bisphosphate  Avanti Polar Lipids 840046X PI(4,5)P2
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Avanti Polar Lipids 850757C POPE; Required for the synthesis of oSRB-POPE
Lissamine Rhodamine B Sulfonyl Chloride (mixed isomers) ThermoFisher Scientific L-20 Required for the synthesis of oSRB-POPE
pH Sensitive Fluorescent Lipid Probe (oSRB-POPE) In-house N/A In-house Synthesis (Huang D. et al. 2013)
Glass Scintillation Vial VWR 66022-065 20 mL volume capacity
Aquasonic 250D VWR N/A Ultrasonic Water Bath
Nuclepore Track-Etched Membranes Whatman 110605 Polycarbonate Membrane; Diameter: 25 mm; Pore Size: 0.1 um; Distributor: Sigma-Aldrich
Chloroform VWR CX1054-6 HPLC grade
LIPEX Extruder Transferra Nanosciences T.001 LIPEX 10 mL Thermobarrel Extruder
Viscotek 802 DLS Malvern Instruments N/A Dynamic Light Scattering; Penn State X-Ray Crystallography Facility Property
Name Company Catalog Number Comments
Data Analysis
GraphPad Prism GraphPad Software v.6 Curve-fitting software for data analysis
Name Company Catalog Number Comments
Microscope
Axiovert 200M Epifluorescence Microscope Carl Zeiss Microscopy N/A Microscope
AxioCam MRm Camera Carl Zeiss Microscopy N/A Camera
X-Cite 120 Excelitas Technologies N/A Light Source
Alexa 568 Filter Set Carl Zeiss Microscopy N/A Ex/Em 576/603 nm
AxioVision LE64 v.4.9.1.0 Software Carl Zeiss Microscopy N/A Image Processing Software
Name Company Catalog Number Comments
Other
Tips VWR 10034-132 200 uL pipette tips; Thin and smooth tip for applying the protein solution into the microfluidic channel
Tips VWR 53509-070 10 uL pipette tips; Thin and smooth tip for applying the vesicle solution into the microfluidic channel
Orion Star A321 pH meter Thermo Scientific STARA3210 pH meter
Orion micro pH probe Thermo Scientific 8220BNWP micro pH probe
N-(2-Hydroxyethyl)-Piperazine-N'-(2-Ethanesulfonic Acid) VWR VWRB30487 HEPES, Free Acid
Sodium Chloride VWR BDH8014-2.5KGR NaCl
Tubing Allied Wire & Cable TFT-200-24 N Internal Diameter: 0.020-0.026 inches (0.051-0.066 cm); Wall Thickness: 0.010 inches (0.025 cm); Flexible Polytetrafluoroethylene Thin-Wall Tubing; Natural Color
Nitrogen Gas – Industrial Praxair N/A Local Provider
Oxygen Gas – Industrial Praxair N/A Local Provider
Liquid Nitrogen Praxair N/A Local Provider

References

  1. Di Paolo, G., De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 443 (7112), 651-657 (2006).
  2. Shewan, A., Eastburn, D. J., Mostov, K. Phosphoinositides in cell architecture. Cold Spring Harb Perspect Biol. 3 (8), a004796 (2011).
  3. Picas, L., Gaits-Iacovoni, F., Goud, B. The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction. F1000Res. 5, (2016).
  4. Lystad, A. H., Simonsen, A. Phosphoinositide-binding proteins in autophagy. FEBS Lett. 590 (15), 2454-2468 (2016).
  5. Balla, T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol Rev. 93, 1019-1137 (2013).
  6. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol. 9 (2), 99-111 (2008).
  7. Kutateladze, T. G. Translation of the phosphoinositide code by PI effectors. Nat Chem Biol. 6 (7), 507-513 (2010).
  8. Harlan, J. E., Hajduk, P. J., Yoon, H. S., Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature. 371 (6493), 168-170 (1994).
  9. Garcia, P., et al. The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochimie. 34 (49), 16228-16234 (1995).
  10. Lemmon, M. A., Ferguson, K. M., O’Brien, R., Sigler, P. B., Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 92 (23), 10472-10476 (1995).
  11. Flesch, F. M., Yu, J. W., Lemmon, M. A., Burger, K. N. Membrane activity of the phospholipase C-delta1 pleckstrin homology (PH) domain. Biochem J. 389, 435-441 (2005).
  12. Narayan, K., Lemmon, M. A. Determining selectivity of phosphoinositide-binding domains. Methods. 39 (2), 122-133 (2006).
  13. Scott, J. L., Musselman, C. A., Adu-Gyamfi, E., Kutateladze, T. G., Stahelin, R. V. Emerging methodologies to investigate lipid-protein interactions. Integr Biol (Camb). 4 (3), 247-258 (2012).
  14. Dowler, S., Currie, R. A., Downes, C. P., Alessi, D. R. DAPP1: A dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J. 342, 7-12 (1999).
  15. He, J., et al. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. J Biol Chem. 286 (21), 18650-18657 (2011).
  16. Ceccarelli, D. F., et al. Non-canonical interaction of phosphoinositides with pleckstrin homology domains of Tiam1 and ArhGAP9. J Biol Chem. 282 (18), 13864-13874 (2007).
  17. Huang, S., Gao, L., Blanchoin, L., Staiger, C. J. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell. 17 (4), 1946-1958 (2006).
  18. Yu, J. W., et al. Genome-eide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell. 13 (5), 677-688 (2004).
  19. Jung, H., Robison, A. D., Cremer, P. S. Detecting protein-ligand binding on supported bilayers by local pH modulation. J Am Chem Soc. 131 (3), 1006-1014 (2009).
  20. Huang, D., Zhao, T., Xu, W., Yang, T., Cremer, P. S. Sensing small molecule interactions with lipid membranes by local pH modulation. Anal Chem. 85 (21), 10240-10248 (2013).
  21. Saxena, A., et al. Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1. J Biol Chem. 277 (51), 49935-49944 (2002).
  22. Knödler, A., Mayinger, P. Analysis of phosphoinositide-binding proteins using liposomes as an affinity matrix. Biotechniques. 38 (6), 858-862 (2005).
  23. Baumann, M. K., Swann, M. J., Textor, M., Reimhult, E. Pleckstrin homology-phospholipase C-delta1 interaction with phosphatidylinositol 4,5-bisphosphate containing supported lipid bilayers monitored in situ with dual polarization interferometry. Anal Chem. 83 (16), 6267-6274 (2011).
  24. Saliba, A. E., et al. A quantitative liposome microarray to systematically characterize protein-lipid interactions. Nat Methods. 11 (1), 47-50 (2014).
  25. Arauz, E., Aggarwal, V., Jain, A., Ha, T., Chen, J. Single-molecule analysis of lipid-protein interactions in crude cell lysates. Anal Chem. 88 (8), 4269-4276 (2016).
  26. Best, Q. A., Xu, R., McCarroll, M. E., Wang, L., Dyer, D. J. Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH. Org Lett. 12 (14), 3219-3221 (2010).
  27. Lee, J., Choi, K. H., Yoo, K. Innovative SU-8 lithography techniques and their applications. Micromachines. 6 (1), 1-18 (2014).
  28. Poyton, M. F., Sendecki, A. M., Cong, X., Cremer, P. S. Cu(2+) binds to phosphatidylethanolamine and increases oxidation in lipid membranes. J Am Chem Soc. 138 (5), 1584-1590 (2016).
  29. Karasek, P., Grym, J., Roth, M., Planeta, J., Foret, F. Etching of glass microchips with supercritical water. Lab Chip. 15 (1), 311-318 (2015).
  30. Thomas, M. S., et al. Print-and-peel fabrication for microfluidics: what’s in it for biomedical applications?. Ann Biomed Eng. 38 (1), 21-32 (2010).
  31. Waheed, S., et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip. 16 (11), 1993-2013 (2016).
  32. Axmann, M., Schutz, G. J., Huppa, J. B. Single molecule fluorescence microscopy on planar supported bilayers. J Vis Exp. (105), e53158 (2015).
  33. Barenholz, Y., et al. A simple method for the preparation of homogeneous phospholipid vesicles. Biochimie. 16 (12), 2806-2810 (1977).
  34. Castellana, E. T., Cremer, P. S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports. 61 (10), 429-444 (2006).
  35. Hamai, C., Yang, T., Kataoka, S., Cremer, P. S., Musser, S. M. Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. Biophys J. 90 (4), 1241-1248 (2006).
  36. Tero, R. Substrate effects on the formation process, structure and physicochemical properties of supported lipid bilayers. Materials. 5 (12), 2658-2680 (2012).
  37. Ferguson, K. M., Lemmon, M. A., Schlessinger, J., Sigler, P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell. 83 (6), 1037-1046 (1995).
  38. Simonsson, L., Hook, F. Formation and diffusivity characterization of supported lipid bilayers with complex lipid compositions. Langmuir. 28 (28), 10528-10533 (2012).
  39. Cong, X., Poyton, M. F., Baxter, A. J., Pullanchery, S., Cremer, P. S. Unquenchable surface potential dramatically enhances Cu(2+) binding to phosphatidylserine lipids. J Am Chem Soc. 137 (24), 7785-7792 (2015).
  40. Robison, A. D., et al. Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers. J Phys Chem B. 120 (35), 9287-9296 (2016).
  41. Robison, A. D., Huang, D., Jung, H., Cremer, P. S. Fluorescence modulation sensing of positively and negatively charged proteins on lipid bilayers. Biointerphases. 8 (1), 1 (2013).
  42. Tabaei, S. R., et al. Formation of cholesterol-rich supported membranes using solvent-assisted lipid self-assembly. Langmuir. 30 (44), 13345-13352 (2014).
  43. Johnson, S. J., et al. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 59 (2), 289-294 (1991).
  44. Koenig, B. W., et al. Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal. Langmuir. 12 (5), 1343-1350 (1996).
  45. Tanaka, M., Sackmann, E. Polymer-supported membranes as models of the cell surface. Nature. 437 (7059), 656-663 (2005).
  46. Renner, L., et al. Supported lipid bilayers on spacious and pH-responsive polymer cushions with varied hydrophilicity. J Phys Chem B. 112 (20), 6373-6378 (2008).
  47. Wagner, M. L., Tamm, L. K. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J. 79 (3), 1400-1414 (2000).
  48. Pace, H., et al. Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes. Anal Chem. 87 (18), 9194-9203 (2015).
  49. Braunger, J. A., Kramer, C., Morick, D., Steinem, C. Solid supported membranes doped with PIP2: Influence of ionic strength and pH on bilayer formation and membrane organization. Langmuir. 29 (46), 14204-14213 (2013).
  50. Paridon, P. A., de Kruijff, B., Ouwerkerk, R., Wirtz, K. W. Polyphosphoinositides undergo charge neutralization in the physiological pH range: A 31P-NMR study. Biochim Biophys Acta. 877 (1), 216-219 (1986).
  51. Liu, C., Huang, D., Yang, T., Cremer, P. S. Monitoring phosphatidic acid formation in intact phosphatidylcholine bilayers upon phospholipase D catalysis. Anal Chem. 86 (3), 1753-1759 (2014).
  52. Saad, J. S., et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A. 103 (30), 11364-11369 (2006).
  53. Hsu, N. Y., et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 141 (5), 799-811 (2010).
  54. Del Campo, C. M., et al. Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22 (3), 397-408 (2014).
  55. Kolli, S., et al. Structure-function analysis of vaccinia virus H7 protein reveals a novel phosphoinositide binding fold essential for poxvirus replication. J Virol. 89 (4), 2209-2219 (2015).
  56. Cho, N. J., et al. Phosphatidylinositol 4,5-bisphosphate is an HCV NS5A ligand and mediates replication of the viral genome. Gastroenterology. 148 (3), 616-625 (2015).

Play Video

Citer Cet Article
Shengjuler, D., Sun, S., Cremer, P. S., Cameron, C. E. PIP-on-a-chip: A Label-free Study of Protein-phosphoinositide Interactions. J. Vis. Exp. (125), e55869, doi:10.3791/55869 (2017).

View Video