Summary

Extracción de muestras y cuantificación cromatográfica simultánea de doxorrubicina y mitomicina C siguiendo la combinación del fármaco en nanopartículas en ratones con tumores

Published: October 05, 2017
doi:

Summary

Este protocolo describe un proceso analítico eficaz y práctico de la extracción de muestra y determinación simultánea de múltiples fármacos, doxorrubicina (DOX), mitomycin C (MMC) y un metabolito DOX cardio tóxico, doxorubicinol (DOXol), en lo biológico muestras de un modelo de tumor de mama preclínicos tratadas con nanopartículas formulaciones de combinación de fármacos sinérgicos.

Abstract

Quimioterapia de combinación se utiliza con frecuencia en la clínica para el tratamiento del cáncer; sin embargo, los efectos adversos asociados al tejido normal pueden limitar su beneficio terapéutico. Combinación de fármacos basados en nanopartículas se ha demostrado para mitigar los problemas planteados por la terapia de la combinación libre de drogas. Nuestros estudios previos han demostrado que la combinación de dos fármacos contra el cáncer, doxorrubicina (DOX) y mitomicina C (MMC), produce un efecto sinérgico contra ambos murino y células de cáncer de mama en vitro. DOX y MMC Co cargados de lípidos de polímero híbrido nanopartículas (DMPLN) omite varias bombas transportador de eflujo que confieren multirresistencia y demostraron mayor eficacia en modelos de tumores de mama. En comparación con las formas de solución convencional, tal eficacia superior de DMPLN fue atribuida a la farmacocinética sincronizada de DOX y MMC y biodisponibilidad intracelular creciente de drogas dentro de las células del tumor de nanocarrier PLN.

Para evaluar la farmacocinética y la bio-distribución de co administra DOX y MMC en solución libre y formas de nanopartículas, un método simple y eficiente Análisis de múltiples fármacos con alto rendimiento de fase inversa de la cromatografía líquida (HPLC) fue desarrollado. En contraste con métodos previamente divulgados que analizan individualmente DOX o MMC en el plasma, este nuevo método HPLC es capaz de cuantificar simultáneamente DOX, MMC y un metabolito importante de DOX cardio tóxico, doxorubicinol (DOXol), en diversas matrices biológicas ( por ejemplo, sangre, tumor de mama y el corazón). Una doble punta de prueba fluorescente y ultravioleta absorbente 4-methylumbelliferone (4-MU) se utilizó como estándar interno (I.S.) para la detección de un solo paso de múltiples análisis de drogas con longitudes de onda de detección diferentes. Este método fue aplicado con éxito para determinar la concentración de DOX y MMC por enfoques de solución y nanopartículas en sangre entera y tejidos varios en un modelo Murino ortotópico mama tumor. El método analítico que se presenta es una herramienta útil para el análisis clínico previo de entrega basados en nanopartículas de combinaciones de fármacos.

Introduction

La quimioterapia es una modalidad de tratamiento primario para muchos tipos de cáncer, pero a menudo se asocia con efectos adversos graves y eficacia limitada debido a la resistencia a los medicamentos y otros factores1,2,3. Para mejorar el resultado de la quimioterapia, se han aplicado regímenes de combinación de fármacos en la clínica basada en consideraciones tales como la no superposición de toxicidades, diferentes mecanismos de acción de los fármacos y drogas no-cross resistencia4,5 , 6. en los ensayos clínicos, una mejor tasa de respuesta del tumor a menudo se observó utilizando simultáneamente administra combinaciones de fármacos en comparación con un régimen de drogas secuencial entrega7,8. Sin embargo, debido a la bio-distribución óptima de droga libre formas, inyección simultánea de múltiples drogas puede causar toxicidad prominente tejido normal que compensa el efecto terapéutico9,10,11. Administración de fármacos basados en Nanocarrier ha demostrado para alterar la farmacocinética y la bio-distribución de medicamentos encapsulados, mejorar la acumulación orientada a tumor12,13,14. Como los revisados en nuestros últimos artículos, nanopartículas cargadas junto con combinaciones de fármacos sinérgicos han demostrado la capacidad para mitigar los problemas de combinaciones de medicamentos libre, debido a su controlada entrega Co temporal y espacial de múltiples drogas al tejido del tumor, permitiendo efectos sinérgicos de la droga contra el cáncer de células de4,15,16. Como resultado, han demostrado una eficacia terapéutica superior y baja toxicidad en ambos estudios preclínicos y clínicos4,17,18.

Nuestros en vitro estudios anteriores encontraron que la combinación de dos fármacos contra el cáncer, doxorrubicina (DOX) y mitomicina C (MMC), produce un efecto sinérgico contra varias líneas de células de cáncer de mama y, además, co carga DOX y MMC en lípidos de polímero híbrido nanopartículas (DMPLN) superaron varios resistente a múltiples fármacos asociados emanación bombas (por ejemplo, P-glicoproteína y proteína resistente al cáncer de mama)19,20,21. In vivo, DMPLN permitió entrega cooperación espacial y temporal de DOX y MMC a los sitios del tumor y mayor biodisponibilidad de los fármacos dentro de células de cáncer, como lo indica la moderación de la formación de los metabolitos DOX doxorubicinol (DOXol)22. Como resultado, el DMPLN mayor apoptosis de las células tumorales, inhibición del crecimiento tumoral y supervivencia prolongada host para libre combinación de DOX y MMC o liposomal DOX formulación22,23,24, 25.

Analizando la cantidad de drogas realizada conjuntamente por un nanocarrier es fundamental para el diseño de formulaciones de nanopartículas efectivas. Se han desarrollado muchos métodos para analizar el nivel de plasma de dosis únicas de DOX o MMC utilizando cromatografía líquida de alto rendimiento (HPLC) solo o en combinación con la espectrometría de masas (MS)26,27,28 , 29 , 30 , 31 , 32 , 33 , 34. sin embargo, estos métodos son a menudo lentos y poco práctico para la terapia de combinación ya que un gran número de muestras biológicas deben prepararse por separado para el análisis de múltiples fármacos (a veces incluidos los metabilitos de la droga). Además de la Unión a proteínas plasmáticas fuerte de DOX y MMC, células de sangre rojas también tienen una gran capacidad para enlazar y concentrar muchas drogas anticáncer35,36. Así, el análisis del plasma para DOX o MMC puede ofuscar concentraciones de la droga de sangre real. El presente trabajo (figura 1) describe un simple y sólido método de análisis de drogas múltiples mediante HPLC de fase inversa simultáneamente extraer y cuantificar DOX, MMC y el DOX metabolito doxorubicinol (DOXol) de sangre entera y tejidos varios ( por ejemplo, tumores). Se ha aplicado con éxito para determinar la farmacocinética y bio-distribución de DOX y MMC, así como la formación de DOXol después de la administración de fármacos vía libres soluciones o formas de nanopartículas (es decir, DMPLN y DOX liposomal) en un orthotopically implantar modelo de tumor de mama murino ratones después de intravenoso (i.v.) de inyección22.

Protocol

todos los experimentos en animales fueron aprobados por el cuidado Comité de Universidad red de Salud Animal del Instituto de cáncer de Ontario y realizados de acuerdo con el Consejo Canadiense sobre directrices de cuidado Animal. 1. preparación de muestras biológicas recoger la sangre, los órganos principales y tumor de mama en momentos predeterminados después de la administración intravenosa (i.v.) de drogas que contienen formulaciones (p. ej., DMPLN, DOX …

Representative Results

Dos medicamentos contra el cáncer, DOX y MMC, así como el metabolito DOX, DOXol, fueron detectado simultáneamente sin ninguna interferencia biológica bajo las mismas condiciones HPLC de gradiente aplicada utilizando 4-MU como el I.S. para los detectores de UV y fluorescencia. DOX, MMC, DOXol y 4 MU estaban bien separados unos de otros con tiempos de retención de 5,7 min para MMC, 10,4 min DOXol, 10,9 min 4-MU y min 11,1 para DOX (figura 2). Cada medicame…

Discussion

En comparación con otros métodos cromatográficos que permitan la detección de especies de un solo medicamento a la vez, el presente Protocolo HPLC es capaz de cuantificar simultáneamente tres compuestos de la droga (DOX, MMC y DOXol) en la misma matriz biológica sin necesidad de cambiar la fase móvil. Este método de preparación y el análisis se ha aplicado con éxito para determinar la farmacocinética y bio-distribución de dos sistemas de entrega de medicamentos basados en nanopartículas (es decir,

Divulgations

The authors have nothing to disclose.

Acknowledgements

Los autores reconocen agradecidos la donación de equipo de Ciencias naturales e Ingeniería de investigación (NSERC) Consejo de Canadá para HPLC, la subvención de funcionamiento del Instituto canadiense de investigación de la salud (CIHR) y canadiense de investigación de cáncer de mama (CBCR) Alianza a X.Y. Wu y la beca de la Universidad de Toronto para R.X. Zhang y Zhang T..

Materials

Doxorubicin  Polymed Theraeutics 111023 Anticancer drug
Mitomycin C Polymed Theraeutics 060814 Anticancer drug
Doxorubicinol (DOXol) Toronto Research Chemicals D558020 Metabolite of DOX
4-Methylumbelliferone sodium salt  Sigma-Aldrich M1508 Internal standard
Myristic Acid Sigma-Aldrich 544-63-8   Materials for poly-lipid hybrid nanoparticles
Polyoxyethylene (100) Stearate Spectrum M1402 Materials for poly-lipid hybrid nanoparticles
Polyoxyethylene (40) Stearate Sigma-Aldrich P3440 Materials for poly-lipid hybrid nanoparticles
Pluronic F68 (PF68) BASF Corp. 9003-11-6 Materials for poly-lipid hybrid nanoparticles
Ultrasonication (UP100H) Hielscher, Ultrasound Technology NA Nanoparticle preparation
Water Bath (ISOTEMP 3016HS) Fisher Scientific NA Nanoparticle preparation
Liposomal Doxorubicin  (Caelyx) Janssen Purchased from the pharmacy Princess Margaret Hospital Clinically-approved nanoparticle formulation 
HPLC-graded Methanol Caledon Chemicals 6701-7-40 HPLC mobile phase composition
HPLC-graded H2O Caledon Chemicals 8801-7-40 HPLC mobile phase composition
HPLC-graded Acetonitrile  Caledon Chemicals 1401-7-40 HPLC mobile phase composition
Trifluoroacetic Acid Sigma-Aldrich 302031 HPLC mobile phase composition
0.45 μm Nylon Membrane Filter Paper Whatman WHA7404004 HPLC mobile phase preparation
1cc Plastic Syringes Becton, Dickinson and Company 2606-309659 Treatment injection
5cc Plastic Syringes Becton, Dickinson and Company 2608-309646 Tissue collections
30G 1/2 Needles Becton, Dickinson and Company 305106 Treatment injection
25G 5/8 Needles Becton, Dickinson and Company 305122 Tissue collections
Sterile 0.9% Saline Univeristy of Toronto House Brand 1011 Tissue perfusion
13 ml Rounded-bottom conical tube  SARSTEDT 62.515.006 Prolyprolene, tissue homogenization
Alpha Minimum Essential Medium (MEM)  Gibco 12571063 Cell medium
1 x Phosphate Buffer Saline Gibco 10010023 Tissue homogenization
Triton X-100 Sigma-Aldrich X100-100 ML Tissue homogenization
Formic acid Caledon Chemicals 1/5/3840 Adjust pH for extraction solvent
Sodium heparin sprayed plastic tubes Becton, Dickinson and Company 367878 Blood collection
Analytical Weigh Balance  Sartorius  CPA225D NA
pH meters  Fisher Scientific 13-637-671 accumet BASIC
Vortex Mixter Fisher Scientific 02-215-365 Vortexing samples at desired speed
1.5 ml  Microcentrifuge Tube Fisherbrand 2043-05408129 Prolyprolene
Model 1000 homogenizer Fisher Scientific 08-451-672 Tissue homogenization
Centrifuge 5702R Eppendorf 5702R Extraction preparation
Heated Evaporator System Glas-Col NA Sample reconstitution
HPLC Screw Thread Vials DIKMA 5320 HPLC sample injection
HPLC Screw Caps with PTFE White Silicone Septa DIKMA 5325 HPLC sample injection
HPLC Polypropylene Insert   Agilent Technologies 5182-0549 Maximum volume 250 μl, HPLC sample injection
Xbridge C18 Column Waters Corporation 186003117 Drug analysis
Gradient pump  Waters Corporation W600 Drug analysis
Auto-sampler Waters Corporation W2707 Drug analysis
Photodiode array detector  Waters Corporation W2998 Drug analysis
Multi λ fluoresence detector  Waters Corporation W2475 Drug analysis
EMPOWER 2 Waters Corporation NA Data analysis software
Scientist Micromath NA Pharmacokinetic analysis
Female Balb/c Mice Jackson Laboratory 001026 In vivo
EMT6/WT Breast Cancer Cells Provided by Dr. Ian Tannock; Ontario Cancer Institute NA In vivo

References

  1. Holohan, C., Van Schaeybroeck, S., Longley, D. B., Johnston, P. G. Cancer Drug Resistance: An Evolving Paradigm. Nat. Rev. Cancer. 13 (10), 714-726 (2013).
  2. Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., Gottesman, M. M. Targeting Multidrug Resistance in Cancer. Nat Rev Drug Discov. 5 (3), 219-234 (2006).
  3. Kong, A. -. N. T., Kong, A. .. N. .. T. .. ,. . Inflammation, Oxidative Stress, and Cancer: Dietary Approaches for Cancer Prevention. , (2013).
  4. Zhang, R. X., Wong, H. L., Xue, H. Y., Eoh, J. Y., Wu, X. Y. Nanomedicine of Synergistic Drug Combinations for Cancer Therapy – Strategies and Perspectives. J Control Release. 240, 489-503 (2016).
  5. Webster, R. M. Combination Therapies in Oncology. Nat. Rev. Drug. Discov. 15 (2), 81-82 (2016).
  6. Waterhouse, D. N., Gelmon, K. A., Klasa, R., Chi, K., Huntsman, D., Ramsay, E., Wasan, E., Edwards, L., Tucker, C., Zastre, J., Wang, Y. Z., Yapp, D., Dragowska, W., Dunn, S., Dedhar, S., Bally, M. B. Development and Assessment of Conventional and Targeted Drug Combinations for Use in the Treatment of Aggressive Breast Cancers. Curr Cancer Drug Targets. 6 (6), 455-489 (2006).
  7. Cancello, G., Bagnardi, V., Sangalli, C., Montagna, E., Dellapasqua, S., Sporchia, A., Iorfida, M., Viale, G., Barberis, M., Veronesi, P., Luini, A., Intra, M., Goldhirsch, A., Colleoni, M. Phase Ii Study with Epirubicin, Cisplatin, and Infusional Fluorouracil Followed by Weekly Paclitaxel with Metronomic Cyclophosphamide as a Preoperative Treatment of Triple-Negative Breast Cancer. Clin Breast Cancer. 15 (4), 259-265 (2015).
  8. Masuda, N., Higaki, K., Takano, T., Matsunami, N., Morimoto, T., Ohtani, S., Mizutani, M., Miyamoto, T., Kuroi, K., Ohno, S., Morita, S., Toi, M. A Phase Ii Study of Metronomic Paclitaxel/Cyclophosphamide/Capecitabine Followed by 5-Fluorouracil/Epirubicin/Cyclophosphamide as Preoperative Chemotherapy for Triple-Negative or Low Hormone Receptor Expressing/Her2-Negative Primary Breast Cancer. Cancer Chemother Pharmacol. 74 (2), 229-238 (2014).
  9. Carrick, S., Parker, S., Thornton, C. E., Ghersi, D., Simes, J., Wilcken, N. Single Agent Versus Combination Chemotherapy for Metastatic Breast Cancer. Cochrane Database Syst Rev. 15 (2), 003372 (2009).
  10. Cardoso, F., Bedard, P. L., Winer, E. P., Pagani, O., Senkus-Konefka, E., Fallowfield, L. J., Kyriakides, S., Costa, A., Cufer, T., Albain, K. S., Force, E. -. M. T. International Guidelines for Management of Metastatic Breast Cancer: Combination Vs Sequential Single-Agent Chemotherapy. J Natl Cancer Inst. 101 (17), 1174-1181 (2009).
  11. Alba, E., Martin, M., Ramos, M., Adrover, E., Balil, A., Jara, C., Barnadas, A., Fernandez-Aramburo, A., Sanchez-Rovira, P., Amenedo, M., Casado, A. Multicenter Randomized Trial Comparing Sequential with Concomitant Administration of Doxorubicin and Docetaxel as First-Line Treatment of Metastatic Breast Cancer: A Spanish Breast Cancer Research Group (Geicam-9903) Phase Iii. J Clinn Oncol. 22 (13), 2587-2593 (2004).
  12. Sadat, S. M., Saeidnia, S., Nazarali, A. J., Haddadi, A. Nano-Pharmaceutical Formulations for Targeted Drug Delivery against Her2 in Breast Cancer. Curr. Cancer Drug Targets. 15 (1), 71-86 (2015).
  13. Devadasu, V. R., Wadsworth, R. M., Ravi Kumar, M. N. V. Tissue Localization of Nanoparticles Is Altered Due to Hypoxia Resulting in Poor Efficacy of Curcumin Nanoparticles in Pulmonary Hypertension. Eur. J. Pharm. Biopharm. 80 (3), 578-584 (2012).
  14. Li, S. D., Huang, L. Pharmacokinetics and Biodistribution of Nanoparticles. Mol. Pharm. 5 (4), 496-504 (2008).
  15. Zhang, R. X., Ahmed, T., Li, L. Y., Li, J., Abbasi, A. Z., Wu, X. Y. Design of Nanocarriers for Nanoscale Drug Delivery to Enhance Cancer Treatment Using Hybrid Polymer and Lipid Building Blocks. Nanoscale. 9 (4), 1334-1355 (2017).
  16. Wang, X., Li, S., Shi, Y., Chuan, X., Li, J., Zhong, T., Zhang, H., Dai, W., He, B., Zhang, Q. The Development of Site-Specific Drug Delivery Nanocarriers Based on Receptor Mediation. J. Control. Release. 193, 139-153 (2014).
  17. Batist, G., Gelmon, K. A., Chi, K. N., Miller, W. H., Chia, S. K., Mayer, L. D., Swenson, C. E., Janoff, A. S., Louie, A. C. Safety, Pharmacokinetics, and Efficacy of Cpx-1 Liposome Injection in Patients with Advanced Solid Tumors. Clin Cancer Res. 15 (2), 692-700 (2009).
  18. Mayer, L. D., Harasym, T. O., Tardi, P. G., Harasym, N. L., Shew, C. R., Johnstone, S. A., Ramsay, E. C., Bally, M. B., Janoff, A. S. Ratiometric Dosing of Anticancer Drug Combinations: Controlling Drug Ratios after Systemic Administration Regulates Therapeutic Activity in Tumor-Bearing Mice. Mol. Cancer Ther. 5 (7), 1854-1863 (2006).
  19. Prasad, P., Cheng, J., Shuhendler, A., Rauth, A. M., Wu, X. Y. A Novel Nanoparticle Formulation Overcomes Multiple Types of Membrane Efflux Pumps in Human Breast Cancer Cells. Drug Deliv Transl Res. 2 (2), 95-105 (2012).
  20. Shuhendler, A. J., Cheung, R. Y., Manias, J., Connor, A., Rauth, A. M., Wu, X. Y. A Novel Doxorubicin-Mitomycin C Co-Encapsulated Nanoparticle Formulation Exhibits Anti-Cancer Synergy in Multidrug Resistant Human Breast Cancer Cells. Breast Cancer Res Treat. 119 (2), 255-269 (2010).
  21. Shuhendler, A. J., O’Brien, P. J., Rauth, A. M., Wu, X. Y. On the Synergistic Effect of Doxorubicin and Mitomycin C against Breast Cancer Cells. Drug Metabol. Drug Interact. 22 (4), 201-233 (2007).
  22. Zhang, R. X., Cai, P., Zhang, T., Chen, K., Li, J., Cheng, J., Pang, K. S., Adissu, H. A., Rauth, A. M., Wu, X. Y. Polymer-Lipid Hybrid Nanoparticles Synchronize Pharmacokinetics of Co-Encapsulated Doxorubicin-Mitomycin C and Enable Their Spatiotemporal Co-Delivery and Local Bioavailability in Breast Tumor. Nanomedicine. 12 (5), 1279-1290 (2016).
  23. Zhang, T., Prasad, P., Cai, P., He, C., Shan, D., Rauth, A. M., Wu, X. Y. Dual-Targeted Hybrid Nanoparticles of Synergistic Drugs for Treating Lung Metastases of Triple Negative Breast Cancer in Mice. Acta Pharmacol Sin. , 1-13 (2017).
  24. Shuhendler, A. J., Prasad, P., Zhang, R. X., Amini, M. A., Sun, M., Liu, P. P., Bristow, R. G., Rauth, A. M., Wu, X. Y. Synergistic Nanoparticulate Drug Combination Overcomes Multidrug Resistance, Increases Efficacy, and Reduces Cardiotoxicity in a Nonimmunocompromised Breast Tumor Model. Mol Pharm. 11 (8), 2659-2674 (2014).
  25. Prasad, P., Shuhendler, A., Cai, P., Rauth, A. M., Wu, X. Y. Doxorubicin and Mitomycin C Co-Loaded Polymer-Lipid Hybrid Nanoparticles Inhibit Growth of Sensitive and Multidrug Resistant Human Mammary Tumor Xenografts. Cancer Lett. 334 (2), 263-273 (2013).
  26. Rafiei, P., Michel, D., Haddadi, A. Application of a Rapid Esi-Ms/Ms Method for Quantitative Analysis of Docetaxel in Polymeric Matrices of Plga and Plga-Peg Nanoparticles through Direct Injection to Mass Spectrometer. Am. J. Anal. Chem. 6 (2), 164-175 (2015).
  27. Daeihamed, M., Haeri, A., Dadashzadeh, S. A Simple and Sensitive Hplc Method for Fluorescence Quantitation of Doxorubicin in Micro-Volume Plasma: Applications to Pharmacokinetic Studies in Rats. Iran. J. Pharm. Res. 14, 33-42 (2015).
  28. Alhareth, K., Vauthier, C., Gueutin, C., Ponchel, G., Moussa, F. Hplc Quantification of Doxorubicin in Plasma and Tissues of Rats Treated with Doxorubicin Loaded Poly(Alkylcyanoacrylate) Nanoparticles. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 887-888, 128-132 (2012).
  29. Al-Abd, A. M., Kim, N. H., Song, S. C., Lee, S. J., Kuh, H. J. A Simple Hplc Method for Doxorubicin in Plasma and Tissues of Nude Mice. Arch Pharm Res. 32 (4), 605-611 (2009).
  30. Loadman, P. M., Calabrese, C. R. Separation Methods for Anthraquinone Related Anti-Cancer Drugs. J. Chromatogr. B Biomed. Sci. Appl. 764 (1-2), 193-206 (2001).
  31. Zhang, Z. D., Guetens, G., De Boeck, G., Van Cauwenberghe, K., Maes, R. A., Ardiet, C., van Oosterom, A. T., Highley, M., de Bruijn, E. A., Tjaden, U. R. Simultaneous Determination of the Peptide-Mitomycin Kw-2149 and Its Metabolites in Plasma by High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 739 (2), 281-289 (2000).
  32. Alvarez-Cedron, L., Sayalero, M. L., Lanao, J. M. High-Performance Liquid Chromatographic Validated Assay of Doxorubicin in Rat Plasma and Tissues. J. Chromatogr. B Biomed. Sci. Appl. 721 (2), 271-278 (1999).
  33. Paroni, R., Arcelloni, C., De Vecchi, E., Fermo, I., Mauri, D., Colombo, R. Plasma Mitomycin C Concentrations Determined by Hplc Coupled to Solid-Phase Extraction. Clin. Chem. 43 (4), 615-618 (1997).
  34. Song, D., Au, J. L. Direct Injection Isocratic High-Performance Liquid Chromatographic Analysis of Mitomycin C in Plasma. J Chromatogr B Biomed Appl. 676 (1), 165-168 (1996).
  35. Schrijvers, D. Role of Red Blood Cells in Pharmacokinetics of Chemotherapeutic Agents. Clin. Pharmacokinet. 42 (9), 779-791 (2003).
  36. Colombo, T., Broggini, M., Garattini, S., Donelli, M. G. Differential Adriamycin Distribution to Blood Components. Eur. J. Drug Metab. Pharmacokinet. 6 (2), 115-122 (1981).
  37. Maeda, H., Nakamura, H., Fang, J. The Epr Effect for Macromolecular Drug Delivery to Solid Tumors: Improvement of Tumor Uptake, Lowering of Systemic Toxicity, and Distinct Tumor Imaging in Vivo. Adv. Drug Deliv. Rev. 65 (1), 71-79 (2013).
  38. Gustafson, D. L., Rastatter, J. C., Colombo, T., Long, M. E. Doxorubicin Pharmacokinetics: Macromolecule Binding, Metabolism, and Excretion in the Context of a Physiologic Model. J. Pharm. Sci. 91 (6), 1488-1501 (2002).
  39. Gabizon, A., Shiota, R., Papahadjopoulos, D. Pharmacokinetics and Tissue Distribution of Doxorubicin Encapsulated in Stable Liposomes with Long Circulation Times. J. Natl. Cancer Inst. 81 (19), 1484-1488 (1989).
  40. Motlagh, N. S., Parvin, P., Ghasemi, F., Atyabi, F. Fluorescence Properties of Several Chemotherapy Drugs: Doxorubicin, Paclitaxel and Bleomycin. Biomed Opt Express. 7 (6), 2400-2406 (2016).
  41. Mohan, P., Rapoport, N. Doxorubicin as a Molecular Nanotheranostic Agent: Effect of Doxorubicin Encapsulation in Micelles or Nanoemulsions on the Ultrasound-Mediated Intracellular Delivery and Nuclear Trafficking. Mol Pharm. 7 (6), 1959-1973 (2010).
  42. Cielecka-Piontek, J., Jelińska, A., Zając, M., Sobczak, M., Bartold, A., Oszczapowicz, I. A Comparison of the Stability of Doxorubicin and Daunorubicin in Solid State. J. Pharm. Biomed Anal. 50 (4), 576-579 (2009).
  43. Gilbert, C. M., McGeary, R. P., Filippich, L. J., Norris, R. L. G., Charles, B. G. Simultaneous Liquid Chromatographic Determination of Doxorubicin and Its Major Metabolite Doxorubicinol in Parrot Plasma. J. chromatogr. B Analyt. Technol. Biomed. Life sci. 826 (1-2), 273-276 (2005).
  44. Liu, Z. S., Li, Y. M., Jiang, S. X., Chen, L. R. Direct Injection Analysis of Mitomycin C in Biological Fluids by Multidemension High Performance Liquid Chromatography with a Micellar Mobile Phase. J. Liq. Chromatogr. Relat. Technol. 19 (8), 1255-1265 (1996).
  45. Zhou, Y., He, C., Chen, K., Ni, J., Cai, Y., Guo, X., Wu, X. Y. A New Method for Evaluating Actual Drug Release Kinetics of Nanoparticles inside Dialysis Devices Via Numerical Deconvolution. J. Control. Release. 243, 11-20 (2016).
check_url/fr/56159?article_type=t

Play Video

Citer Cet Article
Zhang, R. X., Zhang, T., Chen, K., Cheng, J., Lai, P., Rauth, A. M., Pang, K. S., Wu, X. Y. Sample Extraction and Simultaneous Chromatographic Quantitation of Doxorubicin and Mitomycin C Following Drug Combination Delivery in Nanoparticles to Tumor-bearing Mice. J. Vis. Exp. (128), e56159, doi:10.3791/56159 (2017).

View Video