Summary

3D 基质中哺乳动物细胞分裂的定量共焦反射显微镜观察

Published: November 29, 2017
doi:

Summary

该协议有效地研究了3D 胶原基质中的哺乳动物细胞分裂, 结合细胞分裂的同步, 用活细胞成像技术监测3D 矩阵中的分裂事件, 时间分辨共聚焦反射显微镜和定量成像分析。

Abstract

关于哺乳动物细胞分裂如何在3D 环境中被调控的研究, 尽管其生理相关性和治疗意义仍未得到很大的探索。缺乏探索的可能原因是实验性的限制和技术上的挑战, 使3D 文化中细胞分裂的研究效率低下。在这里, 我们描述了一个 imaging-based 的方法, 以有效地研究哺乳动物细胞分裂和细胞基质相互作用的3D 胶原基质。用荧光 H2B 标记的细胞同步使用胸苷阻断和 nocodazole 治疗的结合, 其次是机械 shake-off 技术。然后将同步细胞嵌入3D 胶原基质中。细胞分裂被监测使用活细胞显微镜。细胞分裂期间和之后的胶原纤维的变形是细胞-基质相互作用的指示物, 可以用定量共焦反射显微镜进行监测和量化。该方法提供了一个有效的和一般的方法来研究哺乳动物细胞分裂和细胞基质相互作用在一个生理相关的3D 环境。这种方法不仅为正常组织和疾病的分子基础的发展提供了新的洞察力, 而且还允许设计新的诊断和治疗方法。

Introduction

细胞有丝分裂是细胞生命的重要事件, 其调控在组织和器官发育中起着至关重要的作用。异常有丝分裂涉及自然遗传变异、人类衰老过程和癌症的进展1,2,3,4,5。与正常细胞相比, 肿瘤细胞增殖率增加是癌症的标志之一, 尽管在不同类型的肿瘤中, 甚至在患者中, 细胞行为是相当不均匀的。尽管有希望的临床研究结果, 一些新开发的有丝分裂药物没有证明是有效的在临床医学试验6,7,8,9,10 ,11。必须考虑实验和临床前模型的相关性。许多类型的正常哺乳动物和癌细胞在三维 (3D) 基质中分裂, 如成纤维细胞和纤维细胞在富含胶原蛋白的3D 结缔组织中, 以及3D 基质细胞外基质 (ECM) 中的转移癌细胞。然而, 绝大多数的哺乳动物细胞分裂实验和化验都是在 two-dimensional (2D) 基质上培养的细胞上进行的。一个工程化的3D 矩阵可以更好地概括的组织, 机械性能和生化信号的 3D ECM 的正常和病理组织12,13,14, 15,16,17

尽管生理相关性和治疗意义18,19, 但在3D 环境中如何调节哺乳动物细胞分裂的研究仍大体未被探索。可能的原因包括在3D 矩阵中研究细胞分裂的技术难点和实验挑战。细胞有丝分裂在整个细胞周期中构成一个小的时间分数20。以前的研究表明, 许多哺乳动物细胞的增殖率, 如人类乳腺腺癌 MCF-7, 人骨肉瘤 U2OS, 和人的肝脏 HepG2, 是低得多的3D 矩阵相比, 他们的对应在2D 基板21, 22。此外, 嵌入在3D 矩阵中的细胞在活细胞成像过程中进出焦点。所有这些因素都有助于在3D 文化中利用成像技术捕获细胞分裂事件的效率极低。

ECM 和细胞之间的相互作用在调节细胞分裂方面起着至关重要的作用。在这里, 我们描述了一个有效的方法来研究哺乳动物细胞分裂3D 胶原基质。该方法包括将有丝分裂标记纳入细胞, 细胞分裂的同步, 以及使用活细胞成像技术、时间分辨共聚焦反射显微镜对3D 矩阵中的分裂事件进行监测, 以及定量成像分析。荧光标记的组蛋白 H2B 首先引入细胞中, 作为分化有丝分裂和相间细胞的标志物。然后, 细胞是同步使用胸苷阻断和 nocodazole 治疗的组合, 其次是机械 shake-off 技术。然后将同步细胞直接封装到3D 胶原基质中。多细胞的细胞分裂事件的监测有效使用 low-magnification 延时实时细胞成像。胶原纤维的形变是细胞-基质相互作用的指示物, 通过高倍的共聚焦反射显微镜进行监测。

我们以前使用这种技术来监测和量化细胞-基质相互作用之前, 期间和之后, 两个转移癌细胞株, 人浸润性导管癌 MDA-MB-231 和人纤维 HT1080 细胞, 在3D 胶原矩阵19。这里提出的方法提供了一个有效的和一般的方法来研究哺乳动物细胞分裂在3D 环境和细胞基质相互作用。在整个论文中, MDA-MB-231 单元格线被用作示例。这项协议提供了新的洞察到分子基础的发展的正常组织和疾病, 也可以允许设计新的诊断和治疗方法。

Protocol

所提供的议定书遵循了 HIRB 机构审查委员会的准则。 1. H2B-mCherry 作为细胞有丝分裂标记物的稳定表达 人胚肾 293T (HEK 293T) 细胞中慢粒子的生成 在 10 cm 细胞培养皿上 HEK 293T 细胞, 在细胞培养基中的密度为 5 x 106细胞/皿中 (Dulbecco 氏改良的鹰培养基 (DMEM), 含高糖 (4.5 克/升), 丙酮酸钠, 10% 胎牛血清 (FBS) 和1%青霉素-链霉素 (笔/链球菌))。孵育24小…

Representative Results

本文的目的是提出一个 imaging-based 的方法来研究哺乳动物细胞分裂过程的3D 矩阵, 并量化的互动之间的细胞和3D 细胞外基质细胞分裂。为了促进细胞有丝分裂的成像, 我们利用慢转导将 H2B-mCherry 纳入 MDA-MB-231 细胞。H2B 结合荧光蛋白被用作有丝分裂标记, 以区分有丝分裂细胞与间期细胞, 并定义在细胞有丝分裂期间的不同阶段19,20<s…

Discussion

由于实验的局限性和技术上的挑战18,19, 先前对3D 单元划分的研究没有效率。在3D 胶原基质中有效研究哺乳动物细胞分裂的关键步骤是: (1) 将荧光标记的有丝分裂标记纳入细胞;(2) 细胞分裂的同步;(3) 利用活细胞成像技术、时间分辨共焦反射显微镜和定量成像分析对3D 矩阵中的分裂事件进行监测。

在2D 基底上的有丝分裂细胞可以根据?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 NIH 赠款 R01CA174388 和 U54CA143868 的支持。作者要感谢约翰·霍普金斯大学的安玛塔拉普拉奖, 支持魏通陈这一材料是根据国家科学基金会研究生研究金资助 No. 1232825 的工作。

Materials

Human embryonic kidney 293T ATCC
MDA-MB-231 Physical Sciences Oncology Center, NIH
DMEM Corning 10-013-CV
DMEM powder ThermoFisher Scientific 12100-046
Fetal bovine serum Hyclone SH30910.03
Penicillin-Streptomycin 100X Sigma-Aldrich P0781
Fugene HD Promega E2311
Lipofectamine 2000 Life technologies 11668-07
Plasmid encoding H2B-mCherry in a lentiviral vector Addgene plasmid 21217
Thymidine Sigma-Aldrich T1895
Nocodazole Sigma-Aldrich M1404
Opti-MEM Life Technologies 31985-070
Sodium bicarbonate GibcoBRL 11810-025
HEPES Sigma-Aldrich 113375-100
Collagen Corning 354236
NaOH J.T. Bake 3722-01
Millex-HV syringe filter unit, 0.45-μm, PVDF, 33 mm Millipore SLHVM33RS
Nikon TE2000E epifluorescence microscope Nikon TE2000E
Cascade 1K CCD camera Roper Scientific
NIS-Elements AR imaging software Nikon
Nikon A1 confocal microscope Nikon A1

References

  1. Ly, D. H., Lockhart, D. J., Lerner, R. A., Schultz, P. G. Mitotic misregulation and human aging. Science. 287 (5462), 2486-2492 (2000).
  2. Gascoigne, K. E., Taylor, S. S. How do anti-mitotic drugs kill cancer cells?. J Cell Sci. 122 (Pt 15), 2579-2585 (2009).
  3. Brinkley, B. R. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol. 11 (1), 18-21 (2001).
  4. Phillip, J. M., Aifuwa, I., Walston, J., Wirtz, D. The Mechanobiology of Aging. Annu Rev Biomed Eng. 17, 113-141 (2015).
  5. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144 (5), 646-674 (2011).
  6. Martin, M. D., et al. Effect of ablation or inhibition of stromal matrix metalloproteinase-9 on lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res. 68 (15), 6251-6259 (2008).
  7. Knox, J. J., Hotte, S. J., Kollmannsberger, C., Winquist, E., Fisher, B., Eisenhauer, E. A. Phase II study of Triapine in patients with metastatic renal cell carcinoma: a trial of the National Cancer Institute of Canada Clinical Trials Group (NCIC IND.161). Invest New Drugs. 25 (5), 471-477 (2007).
  8. Komlodi-Pasztor, E., Sackett, D. L., Fojo, A. T. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin Cancer Res. 18 (1), 51-63 (2012).
  9. Tong, W. G., et al. Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. J Clin Oncol. 28 (18), 3015-3022 (2010).
  10. Matulonis, U. A., et al. Phase II study of MLN8237 (alisertib), an investigational Aurora A kinase inhibitor, in patients with platinum-resistant or -refractory epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. Gynecol Oncol. 127 (1), 63-69 (2012).
  11. Boss, D. S., et al. Clinical evaluation of AZD1152, an i.v. inhibitor of Aurora B kinase, in patients with solid malignant tumors. Ann Oncol. 22 (2), 431-437 (2011).
  12. Griffith, L. G., Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 7 (3), 211-224 (2006).
  13. Cukierman, E., Pankov, R., Stevens, D. R., Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science. 294 (5547), 1708-1712 (2001).
  14. Lu, P., Weaver, V. M., Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 196 (4), 395-406 (2012).
  15. Giri, A., et al. The Arp2/3 complex mediates multigeneration dendritic protrusions for efficient 3-dimensional cancer cell migration. FASEB J. 27 (10), 4089-4099 (2013).
  16. Fraley, S. I., Feng, Y., Giri, A., Longmore, G. D., Wirtz, D. Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners. Nat Commun. 3, 719 (2012).
  17. Fraley, S. I., et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat Cell Biol. 12 (6), 598-604 (2010).
  18. Lesman, A., Notbohm, J., Tirrell, D. A., Ravichandran, G. Contractile forces regulate cell division in three-dimensional environments. J Cell Biol. 205 (2), 155-162 (2014).
  19. He, L., et al. Local 3D matrix confinement determines division axis through cell shape. Oncotarget. 7 (6), 6994-7011 (2016).
  20. Held, M., et al. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods. 7 (9), 747-754 (2010).
  21. Fallica, B., Maffei, J. S., Makin, G., Zaman, M. Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels. PLoS One. 7 (10), e48024 (2012).
  22. Meli, L., Jordan, E. T., Clark, D. S., Linhardt, R. J., Dordick, J. S. Influence of a three-dimensional, microarray environment on human Cell culture in drug screening systems. Biomaterials. 33 (35), 9087-9096 (2012).
  23. Artym, V. V., Matsumoto, K. Imaging cells in three-dimensional collagen matrix. Curr Protoc Cell Biol. 10, 1-20 (2010).
  24. Gunzer, M., Kampgen, E., Brocker, E. B., Zanker, K. S., Friedl, P. Migration of dendritic cells in 3D-collagen lattices. Visualisation of dynamic interactions with the substratum and the distribution of surface structures via a novel confocal reflection imaging technique. Adv Exp Med Biol. 417, 97-103 (1997).
  25. Geraldo, S., Simon, A., Vignjevic, D. M. Revealing the cytoskeletal organization of invasive cancer cells in 3D. J Vis Exp. (80), e50763 (2013).
  26. Lleres, D., James, J., Swift, S., Norman, D. G., Lamond, A. I. Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. J Cell Biol. 187 (4), 481-496 (2009).
  27. Poincloux, R., et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc Natl Acad Sci U S A. 108 (5), 1943-1948 (2011).
  28. Carey, S. P., Kraning-Rush, C. M., Williams, R. M., Reinhart-King, C. A. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 33 (16), 4157-4165 (2012).
  29. Langan, T. J., Chou, R. C. Synchronization of mammalian cell cultures by serum deprivation. Methods Mol Biol. 761, 75-83 (2011).
  30. Jackman, J., O’Connor, P. M. Methods for synchronizing cells at specific stages of the cell cycle. Curr Protoc Cell Biol. 8, (2001).
  31. Zwanenburg, T. S. Standardized shake-off to synchronize cultured CHO cells. Mutat Res. 120 (2-3), 151-159 (1983).
  32. Harper, J. V. Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. Methods Mol Biol. 296, 157-166 (2005).
  33. Kihara, T., Ito, J., Miyake, J. Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PLoS One. 8 (11), e82382 (2013).
  34. Ramanujan, S., et al. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J. 83 (3), 1650-1660 (2002).
  35. Harjanto, D., Maffei, J. S., Zaman, M. H. Quantitative analysis of the effect of cancer invasiveness and collagen concentration on 3D matrix remodeling. PLoS One. 6 (9), e24891 (2011).
  36. Wolf, K., et al. Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol. 20 (8), 931-941 (2009).
  37. Petroll, W. M. Differential interference contrast and confocal reflectance imaging of collagen organization in three-dimensional matrices. Scanning. 28 (6), 305-310 (2006).
  38. Fraley, S. I., et al. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci Rep. 5, 14580 (2015).
  39. Ikeda, Y., Collins, M. K., Radcliffe, P. A., Mitrophanous, K. A., Takeuchi, Y. Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Ther. 9 (14), 932-938 (2002).
  40. Ma, H. T., Poon, R. Y. Synchronization of HeLa cells. Methods Mol Biol. 761, 151-161 (2011).

Play Video

Citer Cet Article
He, L., Sneider, A., Chen, W., Karl, M., Prasath, V., Wu, P., Mattson, G., Wirtz, D. Mammalian Cell Division in 3D Matrices via Quantitative Confocal Reflection Microscopy. J. Vis. Exp. (129), e56364, doi:10.3791/56364 (2017).

View Video