Summary

Regioselective O- Glykosylierung Nukleoside über die temporäre 2', 3'-Diol Schutz durch eine Boronic Ester für die Synthese von Disaccharid Nukleosiden

Published: July 26, 2018
doi:

Summary

Hier präsentieren wir Protokolle für die Synthese von Disaccharid Nukleoside von Regioselective O– Glykosylierung der Ribonucleosides über einen vorübergehenden Schutz von ihren 2′, 3′-Diol Moieties unter Verwendung einer zyklischen boronic Ester. Diese Methode gilt für mehrere ungeschützte Nukleoside wie Adenosin, Guanosin, Cytidin, Uridin, 5 Methyluridine und 5-Fluorouridine, entsprechende Disaccharid Nukleoside zu geben.

Abstract

Disaccharid Nukleoside, die aus Disaccharid und Nucleobase Moieties bestehen, sind als wertvolle Gruppe von Naturprodukten mit vielfältigen Bioactivities bekannt. Obwohl chemische O– Glykosylierung eine allgemein positive Strategie Disaccharid Nukleoside zu synthetisieren ist, erfordert die Vorbereitung von Substraten wie a1 Geber und Akzeptoren mühsam schützende Gruppe Manipulationen und eine Reinigung bei jeder synthetische Schritt. In der Zwischenzeit mehrere Forschergruppen haben berichtet, dass boronic und Borinic Ester dienen als ein Schutz oder Aktivierung Gruppe von Kohlenhydrat-Derivate, die Regio – und/oder Stereoselective Acylation, Alkylierung, Silylation und Glykosylierung zu erreichen. In diesem Artikel zeigen wir das Verfahren für die Regioselective O– Glykosylierung von ungeschützten Ribonucleosides Nutzung boronic Säure. Die Veresterung von 2′, 3′-Diol Ribonucleosides mit boronic Säure macht den vorübergehenden Schutz von Diol und folgenden O– Glykosylierung mit einem a1-Spender im Beisein von p– Toluenesulfenyl Chlorid und Silber triflate, Genehmigungen die Regioselective Reaktion der 5′-Hydroxyl-Gruppe das Disaccharid Nukleoside leisten. Diese Methode kann auf verschiedene Nukleoside, z. B. Guanosin Adenosin, Cytidin, Uridin, 5 Metyluridine und 5-Fluorouridine angewendet werden. Dieser Artikel und das dazugehörige Video darstellen (Bild-) Informationen für die O– Glykosylierung von ungeschützten Nukleosiden und ihre Entsprechungen für die Synthese von nicht nur Disaccharid Nukleoside, sondern auch eine Vielzahl von biologisch relevante Derivate.

Introduction

Disaccharid Nukleoside, die Konjugate von einem Nukleosid und ein Kohlenhydrat Glyko-sind verbunden über eine O-glykosidisch bond, bilden eine wertvolle Klasse von natürlich vorkommenden Kohlenhydrate Derivate1,2 ,3,4,5,6,7. Zum Beispiel, fließen sie in biologischer Makromoleküle wie tRNA (Transfer-Ribonukleinsäure) und poly(ADP-ribose) (ADP = Adenosin Diphosphat), sowie in einigen Antibiotika und anderen biologisch aktiven Substanzen (z. B. Adenophostins, Amicetins, Ezomycin)5,6,8,9,10,11,12,13, 14,15,16,17,18,19. Daher sollen Disaccharid Nukleosiden und deren Derivate Bleiverbindungen für Droge-Entdeckung-Forschung sein. Die Methoden für die Synthese von Disaccharid Nukleoside sind in drei Kategorien eingeteilt; enzymatische O– Glykosylierung20,21, chemische N– Glykosylierung5,9,16,22,23, 24, und chemische O– Glykosylierung7,9,14,16,18,19,24, 25,26,27,28,29,30,31,32,33, 34,35,36,37. Insbesondere wäre chemische O– Glykosylierung eine effiziente Methode für die Stereoselective Synthese und große Synthese von Disaccharid Nukleoside. Bisherige Untersuchungen haben gezeigt, dass die O– Glykosylierung von 2′-Deoxyribonucleoside 2 mit dem Thioglycosyl Geber 1, mit der Kombination von p– Toluenesulfenyl-Chlorid und Silber triflate, bietet die gewünscht von Disaccharid Nukleosid 3 (Abbildung 1A; AR = Aryl und PG = Schutzgruppe)38.

Nach diesen Ergebnissen beschlossen wir, O– Glykosylierung von Ribonucleosides Anwendung des p– Toluenesulfenyl-Chlorid/Silber triflate Promotor-Systems zu entwickeln. Während mehrere Beispiele für die O– Glykosylierung von teilweise geschützten Ribonucleosides nachgewiesen7,9,14,16,18,wurden19 ,24,32,33,34,35,36,37, die Verwendung von ungeschützten oder zeitlich begrenzt geschützt Ribonucleosides als ein a1-Akzeptor für O– Glykosylierung geringfügig berichtet worden. Daher würde die Entwicklung Regioselective O– Glykosylierung von ungeschützten oder zeitlich begrenzt geschützt Ribonucleosides eine nützlicher synthetische Methode bieten, ohne den Schutz Gruppe Manipulationen des Ribonucleosides. Für die Erreichung der Regioselective O– Glykosylierung von Ribonucleosides konzentrierten wir uns auf die Bor-Verbindungen, weil mehrere Beispiele für Regio – und/oder Stereoselective Acylation, Alkylierung, Silylation und Glykosylierung von Kohlenhydraten Derivate von boronic unterstützt oder Borinic Säure wurden berichtet,39,40,41,42,43,44,45 ,46,47,48,49,50. In diesem Artikel zeigen wir das Verfahren für die Synthese von Disaccharid Nukleoside Nutzung Regioselective O– Glykosylierung auf die 5′-Hydroxylgruppe des Ribonucleosides über einen zwischengeschalteten boronic Ester. In der hier vorgestellten Strategie würde boronic Ester intermediate 6 gewährt werden, durch die Veresterung von Ribonucleoside 4 mit dem boronic Säure 5, wodurch die Regioselective O– Glykosylierung auf die 5′-Hydroxylgruppe mit Thioglycosyl Geber 7 Disaccharid Nukleosid 8 (Abbildung 1B)51geben. Wir untersuchten auch die Interaktion zwischen einem Ribonucleoside und boronic Säure durch Kernspinresonanz (NMR) Spektroskopie, um die Bildung von boronic Ester zu beobachten. Veresterung zu einem boronic Ester und eine Glykosylierung Reaktion erfordern wasserfreie Bedingungen um die Hydrolyse von boronic Ester und der a1-Spender zu verhindern. In diesem Artikel zeigen wir die typischen Verfahren um die wasserfreien Bedingungen für erfolgreiche Glycosylation Reaktionen für Forscher und Studenten nicht nur in der Chemie, sondern auch in anderen Forschungsbereichen zu erhalten.

Protocol

Hinweis: Alle experimentelle Daten [NMR, Infrarot-Spectroscopies (IR), Masse Spectroscopies (MS), optische Rotationen und elementare Analysen Daten] der synthetisierten Verbindungen wurden in einem früheren Papier51gemeldet. 1. Verfahren zur O- Glykosylierung Reaktionen Synthese von zusammengesetzten α/β-12 (Eintrag 12 in Tabelle 1)Hinweis: Einträge 1-13 in Tabelle 1 wurden durchgeführt mit einem ähnlichen V…

Representative Results

Die Ergebnisse der O- Glykosylierung von Uridin 10 mit Thiomannoside α -9 sind in Tabelle 160,61zusammengefasst. Eintrag 1 führte die O- Glykosylierung von 10 mit α -9 bei fehlender boronic Säure Derivate bei der Bildung von einer komplizierten Mischung. Im Eintrag 2, 10 und Phenylboronic Säure 11a</…

Discussion

Dieses Manuskript soll eine bequeme synthetische Methode vorzubereitende Disaccharid Nukleoside mit ungeschützten Ribonucleosides ohne mühsame schützende Gruppe Manipulationen zeigen. Hier berichten wir über die Regioselective O– glykosylierungen Nukleoside über die temporäre 2′, 3′-Diol Schutz durch eine zyklische boronic Ester (Abbildung 1B)51.

Die Vorbereitung der zyklischen boronic Ester Zwischen…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Diese Forschung wurde finanziert durch Grants-in-aid vom Ministerium für Bildung, Kultur, Sport, Wissenschaft und Technologie (MEXT) von Japan (Nr. 15K 00408, 24659011, 24640156, 245900425 und 22390005 für Shin Aoki), durch einen Zuschuss aus der Tokyo biochemische Forschung Stiftung, Tokyo, Japan, und durch den TUS (Tokyo University of Science) Fonds für strategische Forschungsschwerpunkte. Wir möchte Noriko Sawabe (Fakultät für pharmazeutische Wissenschaften, Tokyo University of Science) für die Messung von NMR-Spektren, Fukiko Hasegawa (Fakultät für pharmazeutische Wissenschaften, Tokyo University of Science) für die Messung der Masse Spektren und Tomoko Matsuo (Research Institute for Science and Technology, Tokyo University of Science) für die Messungen der elementaren Analysen.

Materials

Silver trifluoromethanesulfonate Nacalai Tesque 34945-61
Phenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry B0857
p-Methoxyphenylboronic acid Wako Pure Chemical Industries 321-69201
4-(Trifluoromethyl)phenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry T1788
2,4-Difluorophenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry D3391
Cyclopentylboronic acid (contains varying amounts of Anhydride) Tokyo Chemical Industry C2442
4-Nitrophenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry N0812
4-Hexylphenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry H1489
Adenosine Merck KGaA 862.
Guanosine Acros Organics 411130050
Cytidine Tokyo Chemical Industry C0522
Uridine Tokyo Chemical Industry U0020
5-Fluorouridine Tokyo Chemical Industry F0636
5-Methyluridine Sigma M-9885
Methylamine (40% in Methanol, ca. 9.8mol/L) Tokyo Chemical Industry M1016
N,N-dimethyl-4-aminopyridine Wako Pure Chemical Industries 044-19211
Acetic anhydride Nacalai Tesque 00226-15
Pyridine, Dehydrated Wako Pure Chemical Industries 161-18453
Acetonitrile Kanto Chemical 01031-96
1,4-Dioxane Nacalai Tesque 13622-73
Dichloromethane Wako Pure Chemical Industries 130-02457
Propionitrile Wako Pure Chemical Industries 164-04756
Molecular sieves 4A powder Nacalai Tesque 04168-65
Molecular sieves 3A powder Nacalai Tesque 04176-55
Celite 545RVS Nacalai Tesque 08034-85
Acetonitrile-D3 (D,99.8%) Cambridge Isotope Laboratories DLM-21-10
Trifluoroacetic acid Nacalai Tesque 34831-25
TLC Silica gel 60 F254 Merck KGaA 1.05715.0001
Chromatorex Fuji Silysia Chemical FL100D
Sodium hydrogen carbonate Wako Pure Chemical Industries 191-01305
Hydrochloric acid Wako Pure Chemical Industries 080-01061
Sodium sulfate Nacalai Tesque 31915-96
Chloroform Kanto Chemical 07278-81
Sodium chloride Wako Pure Chemical Industries 194-01677
Methanol Nacalai Tesque 21914-74
JEOL Always 300 JEOL Measurement of NMR
Lamda 400 JEOL Measurement of NMR
PerkinElmer Spectrum 100 FT-IR Spectrometer Perkin Elmer Measurement of IR
JEOL JMS-700 JEOL Measurement of MS
PerkinElmer CHN 2400 analyzer Perkin Elmer Measurement of elemental analysis
JASCO P-1030 digital polarimeter JASCO Measurement of optical rotation
JASCO PU-2089 Plus intelligent HPLC pump JASCO For HPLC
Jasco UV-2075 Plus Intelligent UV/Vis Detector JASCO For HPLC
Rheodyne Model 7125 Injector Sigma-Aldrich 58826 For HPLC
Chromatopac C-R8A Shimadzu For HPLC
Senshu Pak Pegasil ODS Senshu Scientific For HPLC
p-Toluenesulfenyl chloride Prepared  Ref. 38
Phenyl 6-O-acetyl-2,3,4-tri-O-benzyl-1-thio-a-D-mannopyranoside (a-9) Prepared  Ref. 52
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-b-D-galactopyranoside (b-21) Prepared  Ref. 53
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-b-D-glucopyranoside (b-31) Prepared  Ref. 57
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-a-D-Mannopyranoside (a-32) Prepared  Ref. 67
6-N-Benzoyladenosine (14) Prepared  Ref. 54
2-N-Isobutyrylguanosine (16) Prepared  Ref. 55
4-N-Benzoylcytidine (20) Prepared  Ref. 56

References

  1. Kobayashi, J., Doi, Y., Ishibashi, M. Shimofuridin A, a nucleoside derivative embracing an acylfucopyranoside unit isolated from the okinawan marine tunicate Aplidium multiplicatum. The Journal of Organic Chemistry. 59, 255-257 (1994).
  2. Takahashi, M., Tanzawa, K., Takahashi, S. Adenophostins, newly discovered metabolites of penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. The Journal of Biological Chemistry. 269, 369-372 (1994).
  3. Haneda, K. Cytosaminomycins, new anticoccidial agents produced by Strevtomvces sp. KO-8119 I. taxonomy, production, isolation and physico-chemical and biological properties. The Journal of Antibiotics. 47, 774-781 (1994).
  4. Shiomi, K., Haneda, K., Tomoda, H., Iwai, Y., Omura, S. Cytosaminomycins, new anticoccidial agents produced by Streptomyces sp. KO-8119 II. structure elucidation of cytosaminomycins A, B, C and D. The Journal of Antibiotics. 47, 782-786 (1994).
  5. Knapp, S. Synthesis of complex nucleoside antibiotics. Chemical Reviews. 95, 1859-1876 (1995).
  6. Efimtseva, E. V., Kulikova, I. V., Mikhailov, S. N. Disaccharide nucleosides as an important group of natural compounds. Journal of Molecular Biology. 43, 301-312 (2009).
  7. Huang, R. M., et al. Marine nucleosides: Structure, bioactivity, synthesis and biosynthesis. Marine Drugs. 12, 5817-5838 (2014).
  8. Efimtseva, E. V., Mikhailov, S. N. Disaccharide nucleosides and oligonucleotides on their basis. New tools for the study of enzymes of nucleic acid metabolism. Biochemistry (Moscow). 67, 1136-1144 (2002).
  9. Mikhailov, S. N., Efimtseva, E. V. Disaccharide nucleosides. Russian Chemical Reviews. 73, 401-414 (2004).
  10. Kimura, K., Bugg, T. D. H. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Natural Product Reports. 20, 252-273 (2003).
  11. Winn, M., Goss, R. J. M., Kimura, K., Bugg, T. D. H. Antimicrobial nucleoside antibiotics targeting cell wall assembly: Recent advances in structure-function studies and nucleoside biosynthesis. Natural Product Reports. 27, 279-304 (2010).
  12. Takahashi, M., Kagasaki, T., Hosoya, T., Takahashi, S. Adenophostins A and B: Potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. The Journal of Antibiotics. 46, 1643-1647 (1993).
  13. Takahashi, S., Kinoshita, T., Takahashi, M. Adenophostins A and B: Potent agonists of inositol-1,4,5-trisphosphate receptor produced by penicillium brevicompactum. Structure elucidation. The Journal of Antibiotics. 47, 95-100 (1994).
  14. Hotoda, H., Takahashi, M., Tanzawa, K., Takahashi, S., Kaneko, M. IP3 receptor-ligand. 1: Synthesis of adenophostin A. Tetrahedron Letters. 36, 5037-5040 (1995).
  15. Hirota, J., et al. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Letters. 368, 248-252 (1995).
  16. McCormick, J., et al. Structure and total synthesis of HF-7, a neuroactive glyconucleoside disulfate from the funnel-web spider Hololena curta. Journal of the American Chemical Society. 121, 5661-5665 (1999).
  17. Bu, Y. Y., Yamazaki, H., Ukai, K., Namikoshi, M. Anti-mycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A. Marine Drugs. 12, 6102-6112 (2014).
  18. Knapp, S., Gore, V. K. Synthesis of the ezomycin nucleoside disaccharide. Organic Letters. 2, 1391-1393 (2000).
  19. Behr, J. B., Gourlain, T., Helimi, A., Guillerm, G. Design, synthesis and biological evaluation of hetaryl-nucleoside derivatives as inhibitors of chitin synthase. Bioorganic & Medicinal Chemistry Letters. 13, 1713-1716 (2003).
  20. Binder, W. H., Kӓhlig, H., Schmid, W. Galactosylation by use of β-galactosidase: Enzymatic syntheses of disaccharide nucleosides. Tetrahedron: Asymmetry. 6, 1703-1710 (1995).
  21. Ye, M., Yan, L. -. Q., Li, N., Zong, M. -. H. Facile and regioselective enzymatic 5-galactosylation of pyrimidine 2-deoxynucleosides catalyzed by β-glycosidase from bovine liver. Journal of Molecular Catalysis B: Enzymatic. 79, 35-40 (2012).
  22. Niedballa, U., Vorbrüggen, H. A general synthesis of N-glycosides. III. Simple synthesis of pyrimidine disaccharide nucleosides. The Journal of Organic Chemistry. 39, 3664-3667 (1974).
  23. Abe, H., Shuto, S., Matsuda, A. Synthesis of the C-glycosidic analog of adenophostin A, a potent IP3 receptor agonist, using a temporary silicon-tethered radical coupling reaction as the key step. Tetrahedron Letters. 41, 2391-2394 (2000).
  24. Watanabe, K. A., et al. Nucleosides. 114. 5′-O-Glucuronides of 5-fluorouridine and 5-fluorocytidine. Masked precursors of anticancer nucleosides. Journal of Medicinal Chemistry. 24, 893-897 (1981).
  25. Khan, S. H., O’Neill, R. A. . Modern Methods in Carbohydrate Synthesis. , (1996).
  26. Lindhorst, T. K. . Essentials ofCarbohydrate Chemistry and Biochemistry. , (2007).
  27. Demchenko, A. V. . Handbook of Chemical Glycosylation. , (2008).
  28. Chen, X., Halcomb, R. L., Wang, P. G. Chemical Glycobiology (ACS Symposium Series 990). American Chemical Society. , (2008).
  29. Toshima, K., Tatsuta, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chemical Reviews. 93, 1503-1531 (1993).
  30. Ito, Y. My stroll in the backyard of carbohydrate chemistry. Trends in Glycoscience and Glycotechnology. 22, 119-140 (2010).
  31. Yasomanee, J. P., Demchenko, A. V. From stereocontrolled glycosylation to expeditious oligosaccharide synthesis. Trends in Glycoscience and Glycotechnology. 25, 13-41 (2013).
  32. Nakamura, M., Fujita, S., Ogura, H. Synthesis of disaccharide nucleoside derivatives of 3-deoxy-ᴅ-glycero-ᴅ-galacto-2-nonulosonic acid (KDN). Chemical and Pharmaceutical Bulletin. 41, 21-25 (1993).
  33. Mikhailov, S. N., et al. Studies on disaccharide nucleoside synthesis. Mechanism of the formation of trisaccharide purine nucleosides. Nucleosides & Nucleotides. 18, 691-692 (1999).
  34. Lichtenthaler, F. W., Sanemitsu, Y., Nohara, T. Synthesis of 5′-O-glycosyl-ribo-nucleosides. Angewandte Chemie International Edition. 17, 772-774 (1978).
  35. Knapp, S., Gore, V. K. Synthesis of the shimofuridin nucleoside disaccharide. The Journal of Organic Chemistry. 61, 6744-6747 (1996).
  36. Zhang, Y., Knapp, S. Glycosylation of nucleosides. The Journal of Organic Chemistry. 81, 2228-2242 (2016).
  37. Xing, L., Niu, Q., Li, C. Practical glucosylations and mannosylations using anomeric benzoyloxy as a leaving group activated by sulfonium ion. ACS Omega. 2, 3698-3709 (2017).
  38. Aoki, S., et al. Synthesis of disaccharide nucleosides by the O-glycosylation of natural nucleosides with thioglycoside donors. Chemistry – An Asian Journal. 10, 740-751 (2015).
  39. Duggan, P. J., Tyndall, E. M. Boron acids as protective agents and catalysts in synthesis. Journal of the Chemical Society, Perkin Transactions 1. , 1325-1339 (2002).
  40. Yamada, K., Hayakawa, H., Wada, T. Method for preparation of 2′-O-alkylribonucleosides by regioselective alkylation of 2′,3′-O-(arylboronylidene) ribonucleosides. JPN. Patent. 5, (2009).
  41. Lee, D., Taylor, M. S. Borinic acid-catalyzed regioselective acylation of carbohydrate derivatives. Journal of the American Chemical Society. 133, 3724-3727 (2011).
  42. Gouliaras, C., Lee, D., Chan, L., Taylor, M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. Journal of the American Chemical Society. 133, 13926-13929 (2011).
  43. Satoh, H., Manabe, S. Design of chemical glycosyl donors: Does changing ring conformation influence selectivity/reactivity. Chemical Society Reviews. 42, 4297-4309 (2013).
  44. Liu, X., et al. 1,2-trans-1-Dihydroxyboryl benzyl S-glycoside as glycosyl donor. Carbohydrate Research. 398, 45-49 (2014).
  45. Kaji, E., et al. Thermodynamically controlled regioselective glycosylation of fully unprotected sugars through bis(boronate) intermediates. European Journal of Organic Chemistry. , 3536-3539 (2014).
  46. Nakagawa, A., Tanaka, M., Hanamura, S., Takahashi, D., Toshima, K. Regioselective and 1,2-cis-α-stereoselective glycosylation utilizing glycosyl-acceptor-derived boronic ester catalyst. Angewandte Chemie International Edition. 127, 11085-11089 (2015).
  47. Tanaka, M., Nashida, J., Takahashi, D., Toshima, K. Glycosyl-acceptor-derived borinic ester-promoted direct and β-stereoselective mannosylation with a 1,2-anhydromannose donor. Organic Letters. 18, 2288-2291 (2016).
  48. Nishi, N., Nashida, J., Kaji, E., Takahashi, D., Toshima, K. Regio- and stereoselective β-mannosylation using a boronic acid catalyst and its application in the synthesis of a tetrasaccharide repeating unit of lipopolysaccharide derived from E. Coli O75. Chemical Communications. 53, 3018-3021 (2017).
  49. Mancini, R. S., Leea, J. B., Taylor, M. S. Boronic esters as protective groups in carbohydrate chemistry: Processes for acylation, silylation and alkylation of glycoside-derived boronates. Organic & Biomolecular Chemistry. 15, 132-143 (2017).
  50. Mancini, R. S., Lee, J. B., Taylor, M. S. Sequential functionalizations of carbohydrates enabled by boronic esters as switchable protective/activating groups. The Journal of Organic Chemistry. 82, 8777-8791 (2017).
  51. Someya, H., Itoh, T., Aoki, S. Synthesis of disaccharide nucleosides utilizing the temporary protection of the 2′,3′-cis-diol of ribonucleosides by a boronic ester. Molecules. 22, 1650 (2017).
  52. Lemanski, G., Ziegler, T. Synthesis of 4-O-ᴅ-mannopyranosyl-α-ᴅ-glucopyranosides by intramolecular glycosylation of 6-O-tethered mannosyl donors. Tetrahedron. 56, 563-579 (2000).
  53. Liu, G., Zhang, X., Xing, G. A general method for N-glycosylation of nucleobases promoted by (p-Tol)2SO/Tf2O with thioglycoside as donor. Chemical Communications. 51, 12803-12806 (2015).
  54. Zhu, X. -. F., Williams, H. J., Scott, A. I. An improved transient method for the synthesis of N-benzoylated nucleosides. Synthetic Communications. 33, 1233-1243 (2003).
  55. Eisenführ, A., et al. A ribozyme with michaelase activity: Synthesis of the substrate precursors. Bioorganic & Medicinal Chemistry. 11, 235-249 (2003).
  56. Samuels, E. R., McNary, J., Aguilar, M., Awad, A. M. Effective synthesis of 3′-deoxy-3′-azido nucleosides for antiviral and antisense ribonucleic guanidine (RNG) applications. Nucleosides, Nucleotides and Nucleic Acids. 32, 109-123 (2013).
  57. France, R. R., Rees, N. V., Wadhawan, J. D., Fairbanks, A. J., Compton, R. G. Selective activation of glycosyl donors utilising electrochemical techniques: a study of the thermodynamic oxidation potentials of a range of chalcoglycosides. Organic & Biomolecular Chemistry. 2, 2188-2194 (2004).
  58. Wunderlich, C. H., et al. Synthesis of (6-13C)pyrimidine nucleotides as spin-labels for RNA dynamics. Journal of the American Chemical Society. 134, 7558-7569 (2012).
  59. Abraham, R. C., et al. Conjugates of COL-1 monoclonal antibody and β-ᴅ-galactosidase can specifically kill tumor cells by generation of 5-fluorouridine from the prodrug β-ᴅ-galactosyl-5-fluorouridine. Cellular Biophysics. 24, 127-133 (1994).
  60. Huang, X., Huang, L., Wang, H., Ye, X. -. S. Iterative one-pot synthesis of oligosaccharides. Angewandte Chemie International Edition. 43, 5221-5224 (2004).
  61. Verma, V. P., Wang, C. -. C. Highly stereoselective glycosyl-chloride-mediated synthesis of 2-deoxyglucosides. Chemistry – A European Journal. 19, 846-851 (2013).
  62. Martínez-Aguirre, M. A., Villamil-Ramos, R., Guerrero-Alvarez, J. A., Yatsimirsky, A. K. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters. The Journal of Organic Chemistry. 78, 4674-4684 (2013).
  63. Wulff, G., Röhle, G. Results and problems of O-glycoside synthesis. Angewandte Chemie International Edition. 13, 157-170 (1974).
  64. Demchenko, A., Stauch, T., Boons, G. -. J. Solvent and other effects on the stereoselectivity of thioglycoside glycosidations. Synlett. , 818-820 (1997).
  65. Welch, C. J., Bazin, H., Heikkilä, J., Chattopadhyaya, J. Synthesis of C-5 and N-3 arenesulfenyl uridines. Preparation and properties of a new class of uracil protecting group. Acta Chemica Scandinavica. 39, 203-212 (1985).
  66. Tam, P. -. H., Lowary, T. L. Synthesis of deoxy and methoxy analogs of octyl α-ᴅ-mannopyranosyl-(1→6)-α-ᴅ-mannopyranoside as probes for mycobacterial lipoarabinomannan biosynthesis. Carbohydrate Research. 342, 1741-1772 (2007).
  67. Yalpani, M., Boeseb, R. The structure of amine adducts of triorganylboroxines. Chemische Berichte. 116, 3347-3358 (1983).
  68. McKinley, N. F., O’Shea, D. F. Efficient synthesis of aryl vinyl ethers exploiting 2,4,6-trivinylcyclotriboroxane as a vinylboronic acid equivalent. The Journal of Organic Chemistry. 69, 5087-5092 (2004).
  69. Iovine, P. M., Fletcher, M. N., Lin, S. Condensation of arylboroxine structures on Lewis basic copolymers as a noncovalent strategy toward polymer functionalization. Macromolecules. 39, 6324-6326 (2006).
  70. Chen, T. -. B., Huzak, M., Macura, S., Vuk-Pavlović, S. Somatostatin analogue octreotide modulates metabolism and effects of 5-fluorouracil and 5-fluorouridine in human colon cancer spheroids. Cancer Letters. 86, 41-51 (1994).
  71. Agudo, R., et al. Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis. Journal of Molecular Biology. 382, 652-666 (2008).
  72. Kirienko, D. R., Revtovich, A. V., Kirienko, N. V. A high-content, phenotypic screen identifies fluorouridine as an inhibitor of pyoverdine biosynthesis and Pseudomonas aeruginosa virulence. mSphere. 1, 00217 (2016).
  73. Wu, Q., Xia, A., Lin, X. Synthesis of monosaccharide derivatives and polymeric prodrugs of 5-fluorouridine via two-step enzymatic or chemo-enzymatic highly regioselective strategy. Journal of Molecular Catalysis B: Enzymatic. 54, 76-82 (2008).
  74. Brusa, P., et al. In vitro and in vivo antitumor activity of immunoconjugates prepared by linking 5-fluorouridine to antiadenocarcinoma monoclonal antibody. Il Farmaco. 52, 71-81 (1997).
  75. Ozaki, S., et al. 5-Fluorouracil derivatives XX.: Synthesis and antitumor activity of 5′-O.-unsaturated acyl-5-fluorouridines. Chemical and Pharmaceutical Bulletin. 38, 3164-3166 (1990).
  76. Martino, M. M., Jolimaitre, P., Martino, R. The prodrugs of 5-fluorouracil. Current Medicinal Chemistry. Anti-Cancer Agents. 2, 267-310 (2002).

Play Video

Citer Cet Article
Someya, H., Itoh, T., Kato, M., Aoki, S. Regioselective O-Glycosylation of Nucleosides via the Temporary 2′,3′-Diol Protection by a Boronic Ester for the Synthesis of Disaccharide Nucleosides. J. Vis. Exp. (137), e57897, doi:10.3791/57897 (2018).

View Video