Summary

Гиалуроновой кислоты на основе гидрогелей для 3-мерного культуры клеток пациента производные глиобластомы

Published: August 24, 2018
doi:

Summary

Здесь мы представляем собой протокол для трехмерных культуры клеток глиобластомы пациента производные в пределах ортогонально перестраиваемый биоматериалов, предназначен для имитации матрице мозга. Этот подход обеспечивает в пробирке, экспериментальная платформа, которая поддерживает многие характеристики в естественных условиях обычно потерял в культуре клеток глиобластомы.

Abstract

Глиобластома (GBM) является наиболее распространенным, но наиболее смертоносных, рак центральной нервной системы. В последние годы многие исследования были посвящены как внеклеточного матрикса (ECM) уникальный мозг окружающей среды, таких как гиалуроновая кислота (HA), облегчает GBM прогрессии и вторжения. Однако большинство в vitro культуры модели включают GBM клетки вне контекста ECM. Часто также используются мышиных ксенотрасплантатов GBM клеток. Однако в естественных условиях модели делают сложно изолировать взносов индивидуальных особенностей комплекса опухоли микроокружения опухоли поведение. Здесь мы описываем HA на основе гидрогеля, трехмерные (3D) культуры платформу, которая позволяет исследователям самостоятельно изменять концентрацию га и жесткость. Высокомолекулярный HA и полиэтиленгликоля (PEG) составляют гидрогели, которые являются высокоструктурированные через Майкл тип сложения в присутствии живых клеток. Пациента производный GBM клетки экспонат жизнеспособность и распространения 3D гидрогеля культур ставки так хорошо, как, или лучше, чем, когда культивировали как стандартный gliomaspheres. Гидрогель система также позволяет включение ECM-подражательный пептидов изолировать эффекты взаимодействия конкретных клеток ECM. Гидрогели оптически прозрачным, так что живой клетки могут отражаться в 3D культуры. Наконец HA гидрогеля культур совместимы с стандартных методов молекулярной и клеточной анализов, включая ПЦР, Западный blotting и cryosectioning следуют иммунофлюоресценции пятнать.

Introduction

Трехмерная (3D) культуры систем пилки взаимодействия между клетками и их окружающие внеклеточного матрикса (ECM) в родной тканях лучше, чем их двухмерный (2D) коллегами1,2. Выдвижения в тканевой инженерии принесли сложные, 3D культуры платформы, которые позволяют контролируемых расследование 1) как химические и физические компоненты матрицы микроокружения влияет на клетки поведения и 2) эффективность новых терапевтических стратегии для целого ряда заболеваний, включая рак2. В то время как в vitro модели нельзя объяснить системных факторов, таких как эндокринной и иммунной сигналов и таким образом не может полностью заменить в естественных условиях модели, они предоставляют ряд преимуществ, включая воспроизводимости, экспериментальная управления, доступность и скорость. Здесь мы описывают использование мозга подражательный гидрогели, в котором 3D культур клеток опухоли пациента производные мозга захватить многие аспекты опухоли физиологии, в частности, динамику получения лечения сопротивление3. По сравнению с другими методами в пробирке , эти культуры лучше представляют в естественных условиях модели опухоли и клинических наблюдений3.

Глиобластома (GBM) является наиболее частой и смертоносных рака, происходящих в головном мозге, с медиана выживаемости лишь 1-2 года4,5. В последние годы многие исследования были сосредоточены на влияние среды матрица опухоли в GBM6,,7,8. Было сообщено ECM уникальный мозг влияет на GBM ячейки миграция, распространение и терапевтические сопротивление6,,78,9,10,11 , 12. гиалуроновая кислота (HA) – обильные Глюкозаминогликан (GAG) в головном мозге, где он взаимодействует с другими приколами и протеогликаны формы Гидрогель как сетка13. Многие исследования сообщили HA гиперэкспрессия в GBM опухоли и его последующее воздействие на рак прогрессия8,9,13,14,15,16 ,17. Другие компоненты ECM также влияют на GBM опухолевого роста и вторжения6,7,15,18. Например фибронектин и vitronectin, которые обычно оверэкспрессировали в GBM, побудить heterodimerization рецепторов клеток поверхности Интегрин через привязку к последовательности «РСЗ» и инициировать комплекс сигнальные каскады, способствующих выживания опухоли19 ,,2021. Кроме биохимических влияний физические свойства ткани матрицы также влияют на GBM прогрессии22,23.

Постоянное приобретение резистентности к терапии является одной из главных движущих сил GBM летальность4. Наркотики, показывая многообещающие результаты в 2D или gliomasphere модели потерпели неудачу в последующих исследованиях на животных и клинические случаи3, указав, что воздействие microenvironmental факторов значительно способствовали GBM опухоли ответ1. В то время как Животные модели могут обеспечить 3D, физиологически целесообразно микроокружения xenografted клетки пациента и генерировать клинически значимых исходах24,25, сложность мозга микроокружения в естественных условиях делает его трудно определить, какие функции, включая ячейки матрицы взаимодействия, являются ключевыми для конкретных биологических результатов. Выявление новых терапевтических целей выиграют от использования упрощенных культуры платформ, в которых определены биохимические и биофизические свойства.

В отличие от сообщалось ранее биоматериала модели GBM опухоли микроокружения26,27 , которые не достигли истинный ортогональных контроль над индивидуальных биохимические и физические особенности ECM, платформа биоматериала сообщил здесь позволяет разделение вклад нескольких независимых функций GBM фенотипа клетки. Здесь мы представляем систему гидрогеля на основе ха, ортогонально перестраиваемый, для 3D культуры клеток пациента производные GBM. Гидрогели формируются из двух полимерных компонентов: 1) биологически активных HA и 2) биологически инертным полиэтиленгликоля (PEG). PEG является широко используемым биосовместимых и гидрофильные материал с низким содержанием белка адсорбции и минимальным иммуногенности28. Здесь около 5% глюкуроновой кислоты постановление на HA цепи являются функционализированных с тиоловых групп для сшивки в коммерчески доступных 4-руки КОЛЫШЕК с малеинимидов через Майкл тип сложения. В его наиболее распространенной форме в организме HA существует в цепи высокомолекулярного (HMW). Здесь низкой степенью модификации HMW га (500-750 кДа) помогает сохранить родной взаимодействия HA и его рецепторы клеток, в том числе CD4429. Заменив PEG-тиоловых для HA-тиоловых при сохранении постоянной молярное соотношение общего тиолы к малеинимидов, ха концентрации могут быть отделены от механических свойств в результате гидрогелей. Кроме того нейтро элементы управления могут использоваться для конъюгата хвоща завершенной пептиды для определенных среднее количество maleimide завершенной оружия на каждый 4-руки КОЛЫШЕК. Включение пептидов ECM-производные, клей позволяет взаимодействия с интегринов на культивируемых клеток, через которые биохимических и химических сигналов, transduced1. Maleimide тиоловых дополнение происходит очень быстро, в физиологических условиях, свести к минимуму время, необходимое для инкапсуляции клеток и максимизация выживание пациента, полученных клеток. Кроме того гидрогеля культур можно рассматривать как образец типичных ткани и совместимы с методами стандартных характеристик, включая Западный blotting, проточной цитометрии и пятнать иммунофлюоресценции. Следующий протокол описывает процедуры для изготовления гидрогели, создание 3D культур клеток пациента производные GBM и методы биохимического анализа.

Protocol

Все человеческие ткани коллекции шаги были проведены под институционально утвержденных протоколов. 1. Thiolation гиалуроновой кислоты Примечание: Молярная коэффициенты указаны отношении общее количество групп карбоксилат если не указано иное. Раствори?…

Representative Results

Для каждой партии thiolated ха степень thiolation должны быть проверены с помощью H1-ЯМР или Эллман тест. HA модификации, используя процедуру, описанную здесь последовательно создает ~ 5% thiolation (определяемой как молярное соотношение тиолы HA дисахариды) (рис. 1</s…

Discussion

Воспроизводимость данных с использованием этой системы 3D культуры требует: 1) последовательно партии партии thiolation ха, 2) практика для достижения эффективного смешивания гидрогеля прекурсоров и обработка гидрогеля культур для предотвращения повреждения и 3) оптимизированы посева плотн…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддерживается с финансирования из низ (R21NS093199) и UCLA дуги 3R премии. Наша искренняя благодарность идти в лаборатории д-р Harley Корнблюм для предоставления HK301 и HK157 клеточных линий. Мы также благодарим UCLA ткани патологии Core лаборатории (TPCL) для cryosectioning, расширенные свет микроскопии/спектроскопия основного фонда (ALMS) в Калифорнии наносистем институт (НКНИ) в Калифорнийском университете для использования конфокального микроскопа, UCLA Крамп институт Молекулярное воображение для использования ИВИС тепловизионной системы, UCLA молекулярной инструментария центр (MIC) для предоставления спектроскопия магнитного резонанса и поток Cytometry Core в Йонссон Всеобъемлющем Рак центр (ЮКЧК) в Калифорнийском университете за предоставление инструментария для потока цитометрии.

Materials

pH meter Thermo Fisher N/A Any pH meter that has pH 2-10 sensitivity
Stir plate Thermo Fisher N/A General lab equipment
Erlenmeyer flask (125mL) Thermo Fisher FB-501-125
dialysis tubes Thermo Fisher 21-152-14
2L polypropylene beaker Thermo Fisher S01916
sodium hyaluronan Lifecore HA700k-5 500-750 kDa range
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) Thermo Fisher PI-22980
N-hydroxysuccinimide (NHS) sigma aldrich 130672-5G
Hydrochloric acid (HCl) Thermo Fisher SA48-500
Sodium hydroxide (NaOH) Thermo Fisher SS266-1
Cystamine dihydrochloride Thermo Fisher AC111770250
Dithiolthreitol (DTT) Thermo Fisher BP172-25
Ellman's test reagent (5-(3-Carboxy-4-nitrophenyl)disulfanyl-2-nitrobenzoic acid Sigma Aldrich D218200-1G
Deuterated water (deuterium oxide) Thermo Fisher AC166301000
0.22µm vacuum driven filter CellTreat 229706
Phosphate buffered saline (PBS) Thermo Fisher P32080-100T
Hanks' balanced salt saline (HBSS) Thermo Fisher MT-21-022-CV
4-arm-PEG-maleimide JenKem Technology A7029-1 molecular weight around 20kDa
4-arm-PEG-thiol JenKem Technology A7039-1 molecular weight around 20kDa
L-Cysteine  sigma aldrich C7880-100G
RGD ECM mimetic peptide Genscript Biotech N/A Custom peptide with sequence "GCGYGRGDSPG", N-terminal should be acetylated
silicone molds Sigma Aldrich GBL664201-25EA Use razor blade to cut into single pieces
complete culture medium Various Various DMEM/F12 (Thermofisher) with non-serum supplement (G21 from GeminiBio), epidermal growth factor 50ng/mL (Peprotech), fibroblast growth factor 20ng/mL (Pepro Tech) and heprain 25µg/mL (Sigma Aldrich), culture medium varies in different labs
patient derived GBM cell N/A N/A
20G needle BD medical 305175
1mL syringe Thermo Fisher 14-823-434
10mL syringe BD medical 302995
RIPA Buffer Thermo Fisher PI-89901
protease/phosphatase inhibitor mini tablet sigma aldrich 5892970001
vortex shaker Thermo Fisher 12-814-5Q
TrypLE express Thermo Fisher 12604013
70µm cell strainer Thermo Fisher 22-363-548
Paraformaldehyde Thermo Fisher AC416785000 Dissolve 4% (w/v) in PBS, keep pH 7.4
D-sucrose Thermo Fisher BP220-1
Optimal Cutting Temperature (O.C.T.) compound Thermo Fisher NC9373881
Cell culture incubator Thermo Fisher N/A Any General One with 5% CO2 and 37C
fridge/freezer Thermo Fisher N/A Any General Lab equipment with -20C and -80C capacity
Disposable embedding molds Thermo Fisher 12-20
Lyapholizer Labconco N/A Any -105C freeze dryers
HEPES Thermo Fisher BP310-500
Amber vial Kimble Chase 60912D-2
Wide orifice pipette tips Thermo Fisher 9405120
2-methylbutane Thermo Fisher 03551-4
Dry Ice N/A N/A

References

  1. Xiao, W., Sohrabi, A., Seidlits, S. K. . Integrating the glioblastoma microenvironment into engineered experimental models. , (2017).
  2. Tibbitt, M. W., Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and bioengineering. 103 (4), 655-663 (2009).
  3. Xiao, W., et al. Brain-mimetic 3d culture platforms allow investigation of cooperative effects of extracellular matrix features on therapeutic resistance in glioblastoma. Recherche en cancérologie. 78 (5), 1358-1370 (2018).
  4. Holland, E. C. Glioblastoma multiforme: the terminator. Proceedings of the National Academy of Sciences. 97 (12), 6242-6244 (2000).
  5. Ostrom, Q. T., et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006 – 2010. Journal of Neuro-Oncology. 15 (6), 788-796 (2013).
  6. Bellail, A. C., Hunter, S. B., Brat, D. J., Tan, C., Van Meir, E. G. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. International Journal of Biochemistry and Cell Biology. 36 (6), 1046-1069 (2004).
  7. Zamecnik, J. The extracellular space and matrix of gliomas. Acta Neuropathologica. 110 (5), 435-442 (2005).
  8. Jadin, L., et al. Hyaluronan expression in primary and secondary brain tumors. Annals of translational medicine. 3 (6), (2015).
  9. Park, J. B., Kwak, H. J., Lee, S. H. Role of hyaluronan in glioma invasion. Cell adhesion & migration. 2 (3), 202-207 (2008).
  10. Pedron, S., et al. Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS communications. 7 (3), 442-449 (2017).
  11. Jiglaire, C. J., et al. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening. Experimental cell research. 321 (2), 99-108 (2014).
  12. Florczyk, S. J., et al. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials. 34 (38), 10143-10150 (2013).
  13. Day, A. J., Prestwich, G. D. Hyaluronan-binding proteins: tying up the giant. Journal of Biological Chemistry. 277 (7), 4585-4588 (2002).
  14. Wiranowska, M., Tresser, N., Saporta, S. The effect of interferon and anti-CD44 antibody on mouse glioma invasiveness in vitro. Anticancer Research. 18 (5A), 3331-3338 (1998).
  15. Charles, N. A., Holland, E. C., Gilbertson, R., Glass, R., Kettenmann, H. The brain tumor microenvironment. GLIA. 59 (8), 1169-1180 (2011).
  16. Gilg, A. G., et al. Targeting hyaluronan interactions in malignant gliomas and their drug-resistant multipotent progenitors. Clinical Cancer Research. 14 (6), 1804-1813 (2008).
  17. Misra, S., Hascall, V. C., Markwald, R. R., Ghatak, S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in immunology. 6, 201 (2015).
  18. Varga, I., et al. Expression of invasion-related extracellular matrix molecules in human glioblastoma versus intracerebral lung adenocarcinoma metastasis. Zentralblatt fur Neurochirurgie. 71 (4), 173-180 (2010).
  19. Guo, W., Giancotti, F. G. Integrin signalling during tumour progression. Nature Reviews Molecular Cell Biology. 5 (10), 816-826 (2004).
  20. Bello, L., et al. αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery. 49 (2), 380-390 (2001).
  21. Chamberlain, M. C., Cloughsey, T., Reardon, D. A., Wen, P. Y. A novel treatment for glioblastoma: integrin inhibition. Expert review of neurotherapeutics. 12 (4), 421-435 (2012).
  22. Chopra, A., et al. Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. Biomaterials. 35 (1), 71-82 (2014).
  23. Kim, Y., Kumar, S. CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Molecular Cancer Research. 12 (10), 1416-1429 (2014).
  24. Joo, K. M., et al. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Reports. 3 (1), 260-273 (2013).
  25. Oh, Y. T., et al. Translational validation of personalized treatment strategy based on genetic characteristics of glioblastoma. PloS one. 9 (8), e103327 (2014).
  26. Pedron, S., Becka, E., Harley, B. A. C. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials. 34 (30), 7408-7417 (2013).
  27. Wang, C., Tong, X., Yang, F. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Molecular pharmaceutics. 11 (7), 2115-2125 (2014).
  28. Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 31 (17), 4639-4656 (2010).
  29. Stern, R., Asari, A. A., Sugahara, K. N. Hyaluronan fragments: an information-rich system. European journal of cell biology. 85 (8), 699-715 (2006).
  30. Riddles, P. W., Blakeley, R. L., Zerner, B. Ellman’s reagent: 5, 5′-dithiobis (2-nitrobenzoic acid)-a reexamination. Analytical biochemistry. 94 (1), 75-81 (1979).
  31. Jin, R., et al. Synthesis and characterization of hyaluronic acid-poly (ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Acta biomaterialia. 6 (6), 1968-1977 (2010).
  32. Ozawa, T., James, C. D. Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. Journal of visualized experiments. 41, 3-7 (2010).
check_url/fr/58176?article_type=t

Play Video

Citer Cet Article
Xiao, W., Ehsanipour, A., Sohrabi, A., Seidlits, S. K. Hyaluronic-Acid Based Hydrogels for 3-Dimensional Culture of Patient-Derived Glioblastoma Cells. J. Vis. Exp. (138), e58176, doi:10.3791/58176 (2018).

View Video