Summary

一种三肽稳定的油酸纳米乳液

Published: February 27, 2019
doi:

Summary

该方案描述了一种合成与赖氨酸-酪氨酸-苯基丙氨酸 (kyf) 三肽稳定的油酸-铂 (ii) 共轭纳米乳液的有效方法。纳米乳液通过 kyf 和共轭的自组装在温和的合成条件下形成。

Abstract

我们描述了一种方法, 以产生纳米乳液组成的油酸-pt (ii) 核和赖氨酸-酪氨酸-苯基丙氨酸 (kyf-pt-ne) 涂层。kyf-pt-ne 封装 pt (ii) 为 10 wt%, 直径为 107±27 nm, 表面电荷为负。kyf-pt-ne 在水和血清中都是稳定的, 具有生物活性。荧光体与 kyf 的结合允许合成适用于生物成像的荧光纳米乳液。纳米乳液的合成是在水环境中进行的, kyf-pt-ne 是通过短 kyf 肽和油酸-铂 (ii) 共轭的自组装形成的。自组装过程取决于溶液的温度、基板的摩尔比和基板添加的流速。关键的步骤包括在合成过程中保持最佳的搅拌速率, 允许足够的时间进行自组装, 以及在离心式集中器中逐步预浓缩纳米乳液。

Introduction

近年来, 人们对用于药物输送和生物成像生物医学应用的纳米粒子的工程越来越感兴趣, 这些应用包括 1234。基于纳米粒子的系统的多功能往往需要将多个组件纳入一个配方。以脂质或聚合物为基础的构建块往往因其物理化学特性及其生物相容性和生物降解性而不同, 这最终可能影响纳米结构1的功能, 5,6。生物衍生材料, 如蛋白质和肽, 由于其序列的灵活性7,8,早已被公认为多功能纳米结构中很有前途的成分。多肽自组装成高度有序的超分子结构, 形成螺旋丝带9,10, 纤维支架11,12和更多, 从而为建设铺平道路采用自下而上的方法13的生物分子基混合纳米结构.

多肽已被探索在医学和生物技术中的应用, 特别是用于抗癌治疗14和心血管疾病15 , 以及抗生素开发16,17, 代谢疾病18, 感染19。有一百多个小肽疗法正在进行临床试验20。多肽易于修改和快速合成在较低的成本。此外, 它们还可生物降解, 极大地促进了它们的生物和制药应用 21,22.多肽作为结构成分的使用包括反应灵敏的、基于肽的纳米粒子和水凝胶库的工程, 用于控制释放 23242526,27、基于肽的生物传感器28293031或生物电子设备323334.重要的是, 即使是含有两到三个氨基酸残留物 (包括苯基丙氨酸) 的短肽, 也能指导自组装过程353637, 并产生稳定的乳液38.

铂基药物由于其高效, 在许多癌症治疗方案中单独使用, 并与其他药物结合使用 39,40。铂化合物通过形成单加合物和链内或链间交联来诱导 dna 损伤。pt-dna 病变被细胞机械识别, 如果不修复, 会导致细胞凋亡。最重要的机制, pt (ii) 贡献导致癌细胞死亡, 是 dna 转录41,42的抑制。然而, 铂治疗的好处是减少的系统毒性的 pt (ii), 引发严重的副作用。这导致较低的临床剂量的 pt (ii)43, 这往往导致亚治疗浓度的铂到达 dosing。因此, 随后的 dna 修复有助于癌细胞的存活和获得 pt (ii) 的抵抗力。铂耐药是抗癌治疗中的一个主要问题, 也是治疗失败的主要原因 44,45

我们开发了一种稳定的纳米系统, 该系统封装了 pt (ii) 剂, 以便在系统循环中提供屏蔽效果, 并减少 pt (ii) 诱导的副作用。该系统是基于油酸-pt (ii) 核心稳定与 kyf 三肽, 形成纳米乳液 (kyf-pt-ne)46。kyf-pt-ne 的构建块, 三肽的氨基酸, 以及油酸, 具有公认的安全 (gras) 地位, 在食品药品监督管理局 (fda)。采用纳米沉淀法47制备了 kyf-pt-ne。简而言之, 油酸-pt (ii) 共轭溶解在有机溶剂中, 然后在37°c 下滴入水 kyf 溶液 (图 1)。该溶液搅拌数小时, 以便 pyf-pt-ne 自行组装。纳米乳液集中在 10 kda 离心式集中器中, 用清水清洗3次。通过对 kyf 的化学改性和荧光粉, 可以合成适用于生物医学成像的荧光 fitc-kyf-pt-ne。

Protocol

1. 油酸的合成–铂 (ii) 共轭 顺铂的激活 在60°c 水中 (例如纳米颗粒) 悬浮50毫克 (0.167 mmol) 顺铂。 在0.5 毫升的水中加入液位55.2 毫克 (0.325 mmol)agno 3, 在顺铂溶液中搅拌反应至少2小时。agcl 的白色沉淀将形成, 表明反应的进展。 要确定活化反应是否完成, 请用10% 的 hcl 进行测试, 以确定溶液中是否存在游离银+离子。测试应该是阴性的 (不应该形成额外的 a…

Representative Results

图 2a 显示了使用该协议编写的 kyf-pt-ne 的代表性 tem 图像。kyf-pt-ne 在形态上呈球形, 分散良好, 尺寸均匀。kyf-pt-ne 的核心直径为 107±27 nm, 直接从三个 tem 图像中测量, 至少完成了200次测量。利用动态光谱 (dls) 对 kyf-pt-ne 的流体动力直径进行了分析, 发现其动态直径为240纳米, 多分散性指数为0.156。确定了 kyf-pt-ne 在水中的 zeta 电位, 确定了三个独立合成?…

Discussion

纳米乳液合成的关键步骤包括调整基材的摩尔比, 在油酸-pt (ii) 加法期间保持温度和流速控制, 为自组装提供足够的时间, 并使用离心式集中机柱。这些参数影响 kyf-pt-ne 的大小和形态;因此, 保持适当的摩尔比, 正确调整合成条件尤为重要。

纳米乳液合成过程中基板的比例 (步骤 3) 对自组装过程至关重要, 并决定了产品的最终尺寸。kyf 与油酸-pt (ii) 摩尔比为 1:3, 水中三聚酰亚胺?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢国家癌症研究所提供的财政支持, 提供 sc2ca206194。没有宣布相互竞争的金融利益。

Materials

2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium
tetrafluoroborate (TBTU)
ANASPEC INC.: AS-20376 SPPS
4-well chamber confocal dish Lab-Tek II, Thermo Fisher Scientific 154526 For imaging
6-bromohexanoic acid Chem-Impex INT’L INC. 24477 Click modification for peptide
A2780 Generously doanted by professor John Martignetti from The Mount Sinai Hospital Ovarian cancer cell line
Barnstead Nanopure Thermo Fisher D11901 water filtration system
BUCHI rotavapor R-3 Buchi Z568090 For solvent removal and sample drying
Centrifuge 5810 R eppendorf 5811F For platinum complex separation
Cis-dichlorodiamineplatinum (II) 99% Acros Organics 19376-0050 in vitro tests
CP70 Generously doanted by professor John Martignetti from The Mount Sinai Hospital Ovarian cancer cell line
Digital water bath VWR 97025-134 For warming up media for cell culture
Dynamic Light Scattering (DLS) Brookhaven Instrument Corporation For nanoparticle size measurments
ES-2 ATCC CRL-1978 ovarian cancer cell line
Fmoc-L-Lys(Boc)-OH 99.79% Chem-Impex INT’L INC. 00493 SPPS
Fmoc-L-Phe 4-alkoxybenzyl alcohol resin (0.382 meq/g), Chem-Impex INT’L INC. 01914 SPPS
Fmoc-LTyr(tBu)-OH 98% Alfa Aesar H59730 SPPS
HERACELL 150i CO2 incubator Thermo Scientific Fisher incubator
High pressure syringe pump New Era 1010-US For platinum complex addition in nanoparticle synthesis
Hotplate/stirrer VWR 12365-382 For sample stirring and heating
LAMP-1 Antibody(cojugated with Alexa Fluor 647) Santa Cruz Biotechnology sc-18821 AF647 For imaging
N,N-diisopropylethylamine (DIPEA) Oakwood Chemical 005027 SPPS
Ninhydrin 99% Alfa Aesar A10409 Kaiser test
Oleic acid Chem-Impex INT’L INC. 01421 For platinum complex synthesis
OV90 ATCC CRL-11732 Ovarian cancer cell line
PBS Corning 21-031-CV For cell wash
Permount mounting medium Fisher Chemical SP15-100 For imaging
Phenol Fisher Chemical A92500 Kaiser test
Phosphotungstic acid Fisher Chemical A248-25 negative stain for TEM
Piperidine 99% BTC 219260-2.5L SPPS
Platinum AAS standard soultion Alfa Aesar 88086 1000ug/ml for calibration curve
Propargyl bromide 97% Alfa Aesar L10595 For alkyne modification of fluoresceine
Scientific biological cabinet Thermo Scientific Fisher 1385 Bio-hood for cell culture
Self-Cleaning Vacuum System Welch 2028 Vacuum pump for rotavapor
Silver nitrate Acros Organics 19768-0250 Cisplatin activation
SKOV3 ATCC HTB-77 Ovarian cancer cell line
Sodium hydroxide Fisher Scientific S313-1 For platinum complex synthesis
Tin (II) chloride Sigma Aldrich 208256 Test for Platinum presence
TOV21G ATCC CRL-11730 Ovarian cancer cell line
Trifluoroacetic acid 99% (TFA) Alfa Aesar L06374 SPPS
Triisopropylsilane (TIPS) Chem-Impex INT’L INC. 01966 SPPS
Triton-X Sigma Aldrich T8787-100ML For imaging
Uranine powder 40% Fisher Scientific S25328A For alkyne modification of fluoresceine
Vivaspin 20 (10000 MWCO) Sartorious VS2001 For Nanoparticle wash and condensation
VWR Inverted Microscope VWR 89404-462 For cell culture monitoring

References

  1. Agrahari, V., Agrahari, V., Mitra, A. K. Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Therapeutic Delivery. 7 (4), 257-278 (2016).
  2. Anselmo, A. C., Mitragotri, S. Nanoparticles in the clinic. Bioengineering & Translational Medicine. 1 (1), 10-29 (2016).
  3. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2 (12), 751-760 (2007).
  4. Roy Chowdhury, M., Schumann, C., Bhakta-Guha, D., Guha, G. Cancer nanotheranostics: Strategies, promises and impediments. Biomedicine & Pharmacotherapy. 84, 291-304 (2016).
  5. Jeevanandam, J., Chan, Y. S., Danquah, M. K. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie. , 99-112 (2016).
  6. Meerum Terwogt, J. M., Groenewegen, G., Pluim, D., Maliepaard, M., Tibben, M. M., Huisman, A., ten Bokkel Huinink, W. W., Schot, M., Welbank, H., Voest, E. E., Beijnen, J. H., Schellens, J. M. Phase I and pharmacokinetic study of SPI-77, a liposomal encapsulated dosage form of cisplatin. Cancer Chemotherapy and Pharmacology. 49 (3), 201-210 (2002).
  7. Fan, Z., Sun, L., Huang, Y., Wang, Y., Zhang, M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nature Nanotechnology. 11 (4), 388-394 (2016).
  8. Jeong, Y., et al. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. Journal of Controlled Release. 137 (1), 25-30 (2009).
  9. Uesaka, A., et al. Morphology control between twisted ribbon, helical ribbon, and nanotube self-assemblies with his-containing helical peptides in response to pH change. Langmuir. 30 (4), 1022-1028 (2014).
  10. Hwang, W., Marini, D. M., Kamm, R. D., Zhang, S. Supramolecular structure of helical ribbons self-assembled from a B-sheet peptide. Journal of Chemical Physics. 118 (1), 389-397 (2003).
  11. Svobodova, J., et al. Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 11 (3), 831-842 (2017).
  12. Kumar, V. A., et al. Highly angiogenic peptide nanofibers. ACS Nano. 9 (1), 860-868 (2015).
  13. Romera, D., Couleaud, P., Mejias, S. H., Aires, A., Cortajarena, A. L. Biomolecular templating of functional hybrid nanostructures using repeat protein scaffolds. Biochemical Society Transactions. 43 (5), 825-831 (2015).
  14. Medina, S. H., Schneider, J. P. Cancer cell surface induced peptide folding allows intracellular translocation of drug. Journal of Controlled Release. 209, 317-326 (2015).
  15. Recio, C., Maione, F., Iqbal, A. J., Mascolo, N., De Feo, V. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease. Frontiers in Pharmacology. 7, 526 (2016).
  16. McCarthy, K. A., et al. Phage Display of Dynamic Covalent Binding Motifs Enables Facile Development of Targeted Antibiotics. Journal of the American Chemical Society. 140 (19), 6137-6145 (2018).
  17. Lazar, V., et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology. 3 (6), 718-731 (2018).
  18. Czeczor, J. K., McGee, S. L. Emerging roles for the amyloid precursor protein and derived peptides in the regulation of cellular and systemic metabolism. Journal of Neuroendocrinology. 29 (5), (2017).
  19. Branco, M. C., Sigano, D. M., Schneider, J. P. Materials from peptide assembly: towards the treatment of cancer and transmittable disease. Current Opinion in Chemical Biology. 15 (3), 427-434 (2011).
  20. Cheetham, A. G., et al. Targeting Tumors with Small Molecule Peptides. Current Cancer Drug Targets. 16 (6), 489-508 (2016).
  21. Ndinguri, M. W., Solipuram, R., Gambrell, R. P., Aggarwal, S., Hammer, R. P. Peptide targeting of platinum anti-cancer drugs. Bioconjugate Chemistry. 20 (10), 1869-1878 (2009).
  22. Eskandari, S., Guerin, T., Toth, I., Stephenson, R. J. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Advanced Drug Delivery Reviews. 110, 169-187 (2017).
  23. Zhou, J., Du, X., Yamagata, N., Xu, B. Enzyme-Instructed Self-Assembly of Small D-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells. Journal of the American Chemical Society. 138 (11), 3813-3823 (2016).
  24. Sun, J. E., et al. Sustained release of active chemotherapeutics from injectable-solid beta-hairpin peptide hydrogel. Biomaterials Science. 4 (5), 839-848 (2016).
  25. Lock, L. L., Reyes, C. D., Zhang, P., Cui, H. Tuning Cellular Uptake of Molecular Probes by Rational Design of Their Assembly into Supramolecular Nanoprobes. Journal of the American Chemical Society. 138 (10), 3533-3540 (2016).
  26. Kalafatovic, D., Nobis, M., Son, J., Anderson, K. I., Ulijn, R. V. MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth. Biomaterials. 98, 192-202 (2016).
  27. Frederix, P. W., et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nature Chemistry. 7 (1), 30-37 (2015).
  28. Horsley, J. R., et al. Photoswitchable peptide-based ‘on-off’ biosensor for electrochemical detection and control of protein-protein interactions. Biosensors and Bioelectronics. 118, 188-194 (2018).
  29. Hoyos-Nogues, M., Gil, F. J., Mas-Moruno, C. Antimicrobial Peptides: Powerful Biorecognition Elements to Detect Bacteria in Biosensing Technologies. Molecules. 23 (7), 1683 (2018).
  30. Xiao, X., et al. Advancing Peptide-Based Biorecognition Elements for Biosensors Using in-Silico Evolution. ACS Sensors. 3 (5), 1024-1031 (2018).
  31. Puiu, M., Bala, C. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays. Bioelectrochemistry. 120, 66-75 (2018).
  32. Wang, J., et al. Developing a capillary electrophoresis based method for dynamically monitoring enzyme cleavage activity using quantum dots-peptide assembly. Electrophoresis. 38 (19), 2530-2535 (2017).
  33. Etayash, H., Thundat, T., Kaur, K. Bacterial Detection Using Peptide-Based Platform and Impedance Spectroscopy. Methods in Molecular Biology. 1572, 113-124 (2017).
  34. Handelman, A., Apter, B., Shostak, T., Rosenman, G. Peptide Optical waveguides. Journal of Peptide Science. 23 (2), 95-103 (2017).
  35. Chen, C., Liu, K., Li, J., Yan, X. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications. Advances in Colloid and Interface Science. 225, 177-193 (2015).
  36. Reddy, S. M., Shanmugam, G. Role of Intramolecular Aromatic pi-pi Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution. Chemphyschem. 17 (18), 2897-2907 (2016).
  37. Marchesan, S., et al. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. Nanoscale. 4 (21), 6752-6760 (2012).
  38. Scott, G. G., McKnight, P. J., Tuttle, T., Ulijn, R. V. Tripeptide Emulsifiers. Advanced Materials. 28 (7), 1381-1386 (2016).
  39. Galanski, M., Jakupec, M. A., Keppler, B. K. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Current Medicinal Chemistry. 12 (18), 2075-2094 (2005).
  40. Wheate, N. J., Walker, S., Craig, G. E., Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions. 39 (35), 8113-8127 (2010).
  41. Oberoi, H. S., Nukolova, N. V., Kabanov, A. V., Bronich, T. K. Nanocarriers for delivery of platinum anticancer drugs. Advanced Drug Delivery Reviews. 65 (13-14), 1667-1685 (2013).
  42. Fichtinger-Schepman, A. M., van Oosterom, A. T., Lohman, P. H., Berends, F. cis-Diamminedichloroplatinum(II)-induced DNA adducts in peripheral leukocytes from seven cancer patients: quantitative immunochemical detection of the adduct induction and removal after a single dose of cis-diamminedichloroplatinum(II). Recherche en cancérologie. 47 (11), 3000-3004 (1987).
  43. Englander, E. W. DNA damage response in peripheral nervous system: coping with cancer therapy-induced DNA lesions. DNA Repair. 12 (8), 685-690 (2013).
  44. Galluzzi, L., et al. Molecular mechanisms of cisplatin resistance. Oncogene. 31 (15), 1869-1883 (2012).
  45. Boeckman, H. J., Trego, K. S., Turchi, J. J. Cisplatin sensitizes cancer cells to ionizing radiation via inhibition of nonhomologous end joining. Molecular Cancer Research. 3 (5), 277-285 (2005).
  46. Dragulska, S. A., et al. Tripeptide-Stabilized Oil-in-Water Nanoemulsion of an Oleic Acids-Platinum(II) Conjugate as an Anticancer Nanomedicine. Bioconjugate Chemistry. 29 (8), 2514-2519 (2018).
  47. Martinez Rivas, ., J, C., et al. Nanoprecipitation process: From encapsulation to drug delivery. International Journal of Pharmaceutics. 532 (1), 66-81 (2017).
  48. Agilent Technologies. . Analytical Methods for Graphite Tube Atomizers, User’s Guide Manual, 8th edition. , (2012).
  49. Park, S. Y., et al. A smart polysaccharide/drug conjugate for photodynamic therapy. Angewandte Chemie. 50 (7), 1644-1647 (2011).
  50. Canton, I., Battaglia, G. Endocytosis at the nanoscale. Chemical Society Reviews. 41 (7), 2718-2739 (2012).
  51. Lokich, J., Anderson, N. Carboplatin versus cisplatin in solid tumors: an analysis of the literature. Annals of Oncology. 9 (1), 13-21 (1998).
check_url/fr/59034?article_type=t

Play Video

Citer Cet Article
Dragulska, S. A., Wlodarczyk, M. T., Poursharifi, M., Martignetti, J. A., Mieszawska, A. J. A Tripeptide-Stabilized Nanoemulsion of Oleic Acid. J. Vis. Exp. (144), e59034, doi:10.3791/59034 (2019).

View Video