Summary

BK-多瘤病毒非编码控制区域驱动转录活性通过流细胞测定的测量

Published: July 13, 2019
doi:

Summary

在本手稿中,提出了使用 HEK293T 细胞转染的基于 FACS 的 BK-多瘤病毒转录活性的测量方案,该细胞与表达 tdTomato 和 eGFP 的双向报告质粒转染。该方法进一步允许定量确定新化合物对病毒转录的影响。

Abstract

多瘤病毒,如BK-多马病毒(BKPyV),可引起免疫功能低下患者的严重疾病。然而,由于目前没有高效抗病毒药物,需要用测量潜在抗病毒药物影响的方法。在这里,一个双荧光报告器,允许分析BKPyV非编码控制区域(NCCR)驱动的早期和后期促进者活动,以量化潜在的抗病毒药物对病毒基因表达的影响,通过tdTomato和eGFP表达。此外,通过克隆BKPyV-NCCR增压,该议定书中从免疫功能低下的肾移植患者的血液衍生DNA中得到的,可以确定NCCR-重组对病毒基因表达的影响。在克隆患者衍生的氨基细胞后,HEK293T细胞与报告质粒转染,并用潜在的抗病毒剂进行治疗。随后,对细胞进行FACS分析,以测量转染后72小时的平均荧光强度。为了测试具有潜在细胞循环抑制作用的药物的分析,只使用转染的荧光细胞。由于这种测定是在大T抗原表达细胞中进行的,因此可以相互独立地分析早期和晚期表达的影响。

Introduction

聚瘤病毒代表一个独立的小双链DNA(dsDNA)病毒家族,以西米安病毒40(SV40)为原型物种。原发性感染主要发生在儿童期,通常无疾病症状,通常引起免疫宿主的潜在感染。BK-多瘤病毒(BKPyV)主要在肾小管细胞中持续存在,不会引起肾病,但是,在肾移植后免疫能力受损的情况下,病毒可以重新激活,并造成严重的损害和受损的移植物功能达到高病毒血症 (1 x 104 BKPyV DNA 拷贝/mL)1,2 。在大约10%的肾脏移植接受者中,BK-多瘤病毒(BKPyV)的重新激活导致多瘤病毒相关肾病(PyVAN),高达80%与肾异体移植失败的高风险相关3,4.由于没有经过批准的抗病毒药物,目前的治疗是基于减少免疫抑制。有趣的是,mTOR抑制剂似乎具有抗病毒作用;因此,将免疫抑制疗法切换到基于mTOR的免疫抑制可能是防止BKPyV病毒血症5、6、7进展的替代方法。然而,基于mTOR的抗病毒机制目前仍不完全了解。因此,需要测量潜在抗病毒药物在临床相关浓度中的影响的方法。

BKPyV的循环基因组包括大约5 kb,包含一个非编码控制区域(NCCR),作为复制的起源,并同时作为一个双向启动子,推动早期和晚期相mRNA转录的表达。由于自发发生的NCCR-重排、删除和复制在致病性BKPyV8中发现,并且明显累积在PVAN 5,9患者中,原型(wt)和重新排列 (rr) NCCR 活动有助于描述病毒复制性适应性。

如图1所概述,该协议描述了一种常用的方法,通过量化从报告质粒5表达的两种荧光团和eGFP的荧光来测量BKPyV NCCR转录活性。 9,10,11.该程序在SV40大T抗原(lTAg)的存在下进行,它允许分析潜在的抗病毒药物对NCCR活性的早期和晚期的影响5。该测定进一步分析了重组对NCCR活动的影响,并与wt-NCCRs5、9进行了比较。记者将SV40晚聚光信号下行到每个荧光光片开放读取帧的下游,以确保分别对tdTomato和eGFP的两种转录本进行可比和高效的处理。与基于qRT-PCR的方法5,12相比,这种基于FACS的方法代表了低成本和高吞吐量兼容的替代方法,因为没有复杂的提取协议,感染细胞培养,没有昂贵的需要用于免疫荧光染色的抗体。此外,由于通过流式细胞测定分析定义的荧光细胞量,因此也可以定量分析细胞周期抑制剂。

Protocol

本议定书遵循杜伊斯堡-埃森大学医学院伦理委员会(14-6028-BO)批准的人类研究准则。 1. 采集血液或尿液样本,分离多瘤病毒DNA 在EDTA管中采集至少3 mL的血液,或在采集管中收集尿液。 将样品在2,500 x g下离心15分钟。如果需要,将等离子移液器放入新管中,将等离子样品储存在 4°C 下数天,或在 -20°C 冷冻,以延长存储时间。 将40μL蛋白酶K制备到1.5 mL微离心?…

Representative Results

在具有代表性的实验中,通过流式细胞测定测量了BK-多瘤病毒非编码控制区驱动的转录活性。此外,一种mTOR抑制剂,可用于BKPyV重新激活后治疗患者,被测试为抑制病毒早期基因表达。为此,使用双荧光-报告器测定,如之前公布的5。实验设置的总体工作流程方案在F igure 1中进行了说明。首先,根据机构伦理委员会批准的人类研究指南,从?…

Discussion

本文提出了一种常用的方法,用于分析BKPyV非编码控制区域(NCCR)驱动的早期和后期启动器活动。NCCR活性可以同时测量,不需要转染细胞的溶解。此外,可以分析相对大量的细胞,并且不需要共同转染额外的标记,以使荧光值正常化。

此方法的一个关键部分是,克隆的 NCCR 应包含与阿普利森测序所识别的完全相同的序列,该序列对应于患者血浆中存在的大多数变体。为了获得准确的结果?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者感谢芭芭拉·布莱克曼的出色技术援助。这些研究得到了杜伊斯堡大学埃森医学院的IFORES项目以及鲁尔大学和默卡托研究中心(MERCUR)的RIMUR项目的支持。作者感谢约尔根-曼乔特-斯蒂夫通博士奖学金的海伦·塞尔兹尼格和不断的支持。患者材料的收集和使用已获得杜伊斯堡-埃森大学医学院伦理委员会的批准(14-6028-BO)。

Materials

100 bp ladder NEB N3231 Any ladder with a range up to 1 kb can be substituted
2-log ladder NEB N0550 Any ladder with a range up to 10 kb can be substituted
Agar-Agar, Kobe I Carl Roth 5210.3
AgeI-HF NEB R3552
Ampicillin Natriumsalz Cellpure Carl Roth HP62.1
Aqua ad iniectabilia Bbraun 2351744 can be substituted by any manufacturer
BD FACSCanto™ II BD Biosciences
BD FACSDiva BD Biosciences
DAPI Sigma 10236276001
DFC450C camera module Leica Any camera can be used
DMEM Gibco 41966-029 can be substituted by any manufacturer
DMIL LED microscope Leica Any fluorescence microscope can be used
DNA Blood Mini Kit Qiagen 51104 can be substituted by any manufacturer
E.coli DH5alpha Competent Cells Thermo Scientific 18258012
FBS Superior MerckMillipore 50615 Any FBS can be used
FlowJo v10.5.3 FlowJo, LLC Any flow cytometry software FBS can be used
Gel Loading Dye, Purple (6X)  NEB B7024 Any 6x loading dye can be substituted
HEK293T cells ATCC 11268 These cells constitutively express the simian virus 40 (SV40) large T antigen, and clone 17 was selected specifically for its high transfectability.
HERAcell® 240i CO2 Incubator Thermo Scientific can be substituted by any manufacturer
HotStar PCR kit Qiagen 203203
Intas Gel documentation system Intas Any visualisation system for stained DNA containing agarose gels can be used
Low Melt Agarose Biozym 850081 can be substituted by any manufacturer
Opti-MEM Invitrogen 31985070 can be substituted by any manufacturer
pBKV (34-2) ATCC 45025 Plasmid harboring the full-length genome of BKPyV strain Dunlop; was used as a positive control; DNA Seq. Acc.: KP412983
PBS Gibco 14190-136
PCR Cycler MJ Mini 48-Well Personal Cycler Bio-Rad discontinued product Any thermocycler can be used
PCR Nucleotide Mix, 10 mM Promega #C1145 can be substituted by any manufacturer
PCR1 and PCR2 Primers metabion not applicable Desalted. Dilute to (10 µM) with PCR grade water
PenStrep (100x) Gibco 15140-122 can be substituted by any manufacturer
Roti®-GelStain Carl Roth 3865 A fluorescence based stain for measuring dsDNA concentration
SpeI-HF NEB R3133
T4-DNA Ligase NEB M0202
TransIT LT1 Mirus MIR2300
Trypsin 0.05% – EDTA Gibco 25300-054 can be substituted by any manufacturer
ZymoPURE II Plasmid Kit Zymo D4201 can be substituted by any manufacturer

References

  1. Drachenberg, C. B., et al. Histological patterns of polyomavirus nephropathy: correlation with graft outcome and viral load. American Journal of Transplant. 4 (12), 2082-2092 (2004).
  2. Korth, J., et al. Impact of low-level BK polyomavirus viremia on intermediate-term renal allograft function. Transplant Infectious Disease. 20 (1), (2018).
  3. Hirsch, H. H., et al. European perspective on human polyomavirus infection, replication and disease in solid organ transplantation. Clinical Microbiology and Infection. 20 Suppl 7, 74-88 (2014).
  4. Masutani, K., et al. The Banff 2009 Working Proposal for polyomavirus nephropathy: a critical evaluation of its utility as a determinant of clinical outcome. American Journal of Transplantation. 12 (4), 907-918 (2012).
  5. Korth, J., et al. Impact of immune suppressive agents on the BK-Polyomavirus non coding control region. Antiviral Research. 159, 68-76 (2018).
  6. Hirsch, H. H., Yakhontova, K., Lu, M., Manzetti, J. BK Polyomavirus Replication in Renal Tubular Epithelial Cells Is Inhibited by Sirolimus, but Activated by Tacrolimus Through a Pathway Involving FKBP-12. Amerian Journal of Transplantation. 16 (3), 821-832 (2016).
  7. Sanchez Fructuoso, A. I., et al. Mammalian target of rapamycin signal inhibitors could play a role in the treatment of BK polyomavirus nephritis in renal allograft recipients. Transplant Infectious Disease. 13 (6), 584-591 (2011).
  8. Moens, U., Johansen, T., Johnsen, J. I., Seternes, O. M., Traavik, T. Noncoding control region of naturally occurring BK virus variants: sequence comparison and functional analysis. Virus Genes. 10 (3), 261-275 (1995).
  9. Gosert, R., et al. Polyomavirus BK with rearranged noncoding control region emerge in vivo in renal transplant patients and increase viral replication and cytopathology. Journal of Experimental Medicine. 205 (4), 841-852 (2008).
  10. Bethge, T., et al. Sp1 sites in the noncoding control region of BK polyomavirus are key regulators of bidirectional viral early and late gene expression. Journal of Virology. 89 (6), 3396-3411 (2015).
  11. Gosert, R., Kardas, P., Major, E. O., Hirsch, H. H. Rearranged JC virus noncoding control regions found in progressive multifocal leukoencephalopathy patient samples increase virus early gene expression and replication rate. Journal of Virology. 84 (20), 10448-10456 (2010).
  12. Bernhoff, E., Gutteberg, T. J., Sandvik, K., Hirsch, H. H., Rinaldo, C. H. Cidofovir inhibits polyomavirus BK replication in human renal tubular cells downstream of viral early gene expression. American Journal of Transplantation. 8 (7), 1413-1422 (2008).
  13. Widera, M., et al. HIV-1 persistent viremia is frequently followed by episodes of low-level viremia. Medical Microbiology Immunology. , (2017).
  14. Zhang, S., Cahalan, M. D. Purifying plasmid DNA from bacterial colonies using the QIAGEN Miniprep Kit. Journal of Visualized Experiment. (6), 247 (2007).
  15. Drew, R. J., Walsh, A., Laoi, B. N., Crowley, B. Phylogenetic analysis of the complete genome of 11 BKV isolates obtained from allogenic stem cell transplant recipients in Ireland. Journal of Medical Virology. 84 (7), 1037-1048 (2012).
  16. Dorries, K., Vogel, E., Gunther, S., Czub, S. Infection of human polyomaviruses JC and BK in peripheral blood leukocytes from immunocompetent individuals. Virology. 198 (1), 59-70 (1994).
  17. Teutsch, K., et al. Early identification of renal transplant recipients with high risk of polyomavirus-associated nephropathy. Medical Microbiology Immunology. 204 (6), 657-664 (2015).
  18. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of Visualized Experiment. (41), (2010).
  19. Korth, J., et al. The detection of BKPyV genotypes II and IV after renal transplantation as a simple tool for risk assessment for PyVAN and transplant outcome already at early stages of BKPyV reactivation. Journal of Clinical Virology. 113, 14-19 (2019).
  20. Caputo, A., Barbanti-Brodano, G., Wang, E., Ricciardi, R. P. Transactivation of BKV and SV40 early promoters by BKV and SV40 T-antigens. Virology. 152 (2), 459-465 (1986).
  21. Shaner, N. C., Steinbach, P. A., Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods. 2 (12), 905-909 (2005).
check_url/fr/59755?article_type=t

Play Video

Citer Cet Article
Korth, J., Sertznig, H., Moyrer, S., Doevelaar, A. A. N., Westhoff, T. H., Babel, N., Witzke, O., Kribben, A., Dittmer, U., Widera, M. Measurement of BK-polyomavirus Non-Coding Control Region Driven Transcriptional Activity Via Flow Cytometry. J. Vis. Exp. (149), e59755, doi:10.3791/59755 (2019).

View Video