Summary

A 直接、再生和原子经济合成3-Aroyl-N-羟基-5-硝基胺基,通过环加4-硝基苯与烷基诺

Published: January 21, 2020
doi:

Summary

3-Aroyl-N-羟基-5-硝基苯,在一步热过程中,通过循环添加4-硝基苯与结合的终端烷基酮进行合成。通过相应苯胺和烷基诺的氧化程序,充分报告了硝基苯胺和烷基诺的制备。

Abstract

我们引入了一种通过用乙酰酮来消灭硝基索雷奈的3种替代蛋白的再生选择性和原子经济化程序。反应是在没有任何催化剂和优异的再焦选择性下进行的。未发现2种阿罗伊林多尔产品的痕迹。使用4-硝基苯作为起始材料,3-aroyl-N-羟基-5-硝基苯产品从反应混合物沉淀,并通过过滤分离,无需任何进一步的纯化技术。与相应的N-羟基-3-丙烯醇不同,在溶液中自发地给予脱氢剂化产物,N-羟基-3-阿罗伊基胺是稳定的,没有观察到二聚化化合物。

Introduction

芳香C-硝基化合物1和烷基诺2是多功能反应物,不断深入使用和研究,作为制备高价值化合物的起始材料。硝基索雷在有机合成中起着越来越大的作用。它们用于许多不同的目的(例如,异体Diels-Alder反应3,4,硝基-阿尔多尔反应5,6,硝基-Ene反应7,合成偶氮化合物8,9,10)。最近,他们甚至被用作起始材料,以支付不同的杂环化合物11,12,13。在过去的几十年里,共和体被调查,因为他们作为非常有趣和有用的脚手架,在实现许多高价值的衍生物和杂环产物14,15,16,17,18的作用。C-硝基芳烃可通过使用不同氧化剂作为过氧硫酸钾(KHSO5+0.5KHSO4+0.5K2SO4)19、Na2WO4/H 2 O220、Mo(VI)复合物/H2O2221、22、23、硒衍生物的相应和市售的氧化反应提供24.烷基诺很容易通过使用各种氧化剂(CrO325甚至称为琼斯试剂或轻度反应剂作为 MnO2 26和 Des-Martin 期27) 的相应烷基醇的氧化制备。烷基醇可以通过溴化乙酰化溴没有直接反应与市售的甲醛或异丙二甲醛28。

Indole 可能是研究最多的杂环化合物和 indole 衍生物,在许多不同的研究领域有着广泛的应用。医学化学家和材料科学家都生产了许多基于丁多尔的产品,涵盖了不同的功能和潜在的活动。许多研究小组对Indole化合物进行了调查,天然产物和含有Indole框架的合成衍生物都显示出相关和奇特的特性29、30、31、32。在过多的indole化合物中,3种阿罗伊林多利在显示生物活性的分子中具有相关作用(图1)。不同的中药产品属于不同类别的候选药物,成为潜在的新药33。合成和自然发生的3-阿罗伊林多利人被称为抗菌,抗米药,镇痛,抗病毒,抗炎,抗nonos,抗糖尿病和抗癌34,35的作用。”1-羟基丁二项假说”被Somei和同事挑衅性地引入,作为支持N-羟基多利在生物合成和功能化的白碱36、37、38、39的生物作用的有趣和刺激的假设。最近,许多内生N-羟基杂环状化合物的观察强化了这一假设,这些化合物显示了相关的生物活性,并且作为亲药物40,在许多用途中具有有趣的作用。近年来, 对新型活性药物成分的搜索发现,在天然产物和生物活性化合物中检测到并发现了不同的N-羟基丁胺片段(图2):StephacidinB41和科罗韦丁42被称为抗肿瘤生物碱、Thiazomycins43(A和D)、诺托胺G44和诺卡他辛45、46、47(I、III和IV)抗生素,奥帕卡林B48是天然生物碱从阿斯西迪亚伪二体蛋白石和双氨腺素A和B是两种色素从柳科普林努斯伯恩巴莫米49。LDH-A(乳酸脱氢酶-A)的新型高效N-羟基苯甲酸酯抑制剂及其在细胞内降低葡萄糖转化为乳酸的能力被开发为50,51,52,53,54,55,56。其他研究人员重申,在插入N-羟基组57后,未显示生物活性的indole化合物成为有用的亲药物。

争论的主题是N-羟基多利苯的稳定性,其中一些化合物很容易引起脱氢作用反应,导致形成一类新化合物,后来改名为卡丁酸58,59,60,61,通过形成一个新的C-C键和两个新的C-O键。由于稳定N-羟基多利苯的重要性,研究不同的合成方法,以方便制备这种化合物成为一个基本课题。在以前的研究中,我们中的一些人使用硝基苯乙烯和硝基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基作为起始材料62。报道了卡多根-桑德伯格型反应的分子内循环化。在过去的几十年里,我们开发了一种新型的环增剂,在硝基和硝基亚酮之间以分子间方式,以不同烷基奈的方式提供以蛋白、N-羟基和N-羟基和N-阿尔基西辛多利为主要产品(图3)。

起初,使用芳香和脂肪烷基63,64,65,66,67的反应进行大超过烷基(10或12倍),有时在烷基条件,以避免形成卡丁烷。3-替代印多尔产品在中度至良好产量下实现了再生。使用电子差烷基,如4-乙酰二胺衍生物作为特权基质,我们可以执行这个一锅合成协议的反应使用1/1硝基苯甲酸酯/烷基烷摩尔比68。有了这个协议,一个有趣的一类激酶抑制剂作为经络素,海洋生物碱从甲流虫69分离出来,准备显示一种不同的方法,通过一个浸化程序(图4)68。子午线一般是使用合成工具从预先形成的印多尔反应物开始的。据我们所知,只有一些方法报告通过浸化程序68,70子午线衍生物的总合成。

在使用电子贫烷基奈的最新发展中,值得测试使用终端烷基诺作为基质的基质用于脱氧管化过程,这导致我们揭示了一种分子间合成技术,以买得起3-aroyl-N-羟基苯甲酸酯产品71,72。与研究的经络制备过程类似,使用终端丙烯基诺化合物使用1/1 Ar-N_O/Ar-(C_O)-C=CH摩尔比(图5)。使用烷基诺作为特权起始材料,一般蛋白石合成与不同的反应物进行探索广泛的基质测量和改变基硝酸和芳香的副物的性质。C-硝基芬芳化合物上的电子提取组导致我们在反应时间和产品产量方面均有所改善。一个有趣的合成方法,使这些化合物的稳定库可能非常有用,经过初步研究,我们优化了我们的合成协议,使用烷基诺和4硝基苯之间的这种化学计量反应,以提供稳定的3-aroyl-N-羟基-5-硝基多利苯。基本上,这种容易获得N-羟基多利症导致我们的证据,因为硝基索雷内和烷基诺之间的环增反应是一个非常原子经济的过程。

Protocol

1. 琼斯试剂的初步制备 在含有磁性搅拌棒的 500 mL 烧杯中,使用铲子添加 25 克(0.25 mol) 三氧化铬。 加入75 mL的水,使溶液保持在磁性搅拌下。 在冰水浴中缓慢加入25 mL的浓缩硫酸,仔细搅拌和冷却。注:现在溶液已准备就绪,稳定且可用于许多氧化程序;本程序制备的溶液浓度为2.5M。 2. 合成1-苯基-2-丙-1-1 在含有磁性搅拌棒的露天圆形?…

Representative Results

4-硝基苯2的制备是通过与过氧硫酸钾反应氧化4-硝基苯1来实现的,如图6所示。该产品2在MeOH(两次)再结晶后获得64%的产量,污染为4,4′-bis-硝基-亚氧苯6。产品2的结构由1个H-NMR确认(图7)。1H-NMR (400 MHz, CDCl3): = 8.53 (d, J = 8.8 Hz, 2H), 8.07 (d, <em…

Discussion

硝基苯基苯基苯基苯基苯基苯基苯基苯对反应具有非常高的多功能性和强大而广泛的应用。在以前的报告中,我们可以概括我们的合成协议,使用不同的C-硝基芬芳烃和替代终端丙烯基诺或异丙烯基酮72。该程序显示了深度基底调查和高功能组耐受性,电子提取组和电子供体组均存在于硝基苯和烷基诺中。

这里报道了用1-苯-2-propyne-1-1循环添加4-硝基硝?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

恩里卡·阿尔贝蒂博士和玛尔塔·布吕卡博士因收集和注册NMR光谱而得到认可。我们感谢弗朗切斯科·蒂比莱蒂博士和加布里埃拉·伊罗尼莫博士的有益讨论和实验援助。

Materials

4-Nitroaniline TCI Chemicals N0119
Acetone TCI Chemicals A0054
1-Phenyl-2-propyne-1-ol TCI Chemicals P0220
Celite 535 Fluorochem 44931
Dichloromethane TCI Chemicals D3478
Sodium hydrogen carbonate Sigma Aldrich S5761
Sodium chloride Sigma Aldrich 746398
Sodium sulfate anhydrous Sigma Aldrich 239313
Oxone TCI Chemicals O0310
Methanol TCI Chemicals M0628
Toluene TCI Chemicals T0260
Chromium Trioxide Sigma Aldrich 236470
Dichloromethane anhydrous TCI Chemicals D3478
Hexane anhydrous TCI Chemicals H1197

References

  1. Vančik, H. . Aromatic C-nitroso Compounds. , (2013).
  2. Whittaker, R. E., Dermenci, A., Dong, G. Synthesis of Ynones and Recent Application in Transition-Metal-Catalyzed Reactions. Synthesis. 48 (2), 161-183 (2016).
  3. Carosso, S., Miller, M. J. Nitroso Diels-Alder (NDA) reaction as an efficient tool for the functionalization of diene-containing natural products. Organic Biomolecular Chemistry. 12 (38), 7445-7468 (2014).
  4. Maji, B., Yamamoto, H. Catalytic Enantioselective Nitroso Diels-Alder Reaction. Journal of the American Chemical Society. 137 (50), 15957-15963 (2015).
  5. Momiyama, N., Yamamoto, H. Enantioselective O- and N-Nitroso Aldol Synthesis of Tin Enolates. Isolation of Three BINAP-Silver Complexes and Their Role in Regio- and Enantioselectivity. Journal of the American Chemical Society. 126 (17), 5360-5361 (2004).
  6. Hayashi, Y., Yamaguchi, J., Sumiya, T., Shoji, M. Direct proline-catalyzed asymmetric alpha-aminoxylation of ketones. Angewandte Chemie International Edition. 43 (9), 1112-1115 (2004).
  7. Adam, W., Krebs, O. The Nitroso Ene Reaction: A Regioselective and Stereoselective Allylic Nitrogen Functionalization of Mechanistic Delight and Synthetic Potential. Chemical Reviews. 103 (10), 4131-4146 (2003).
  8. Merino, E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chemical Society Reviews. 40 (7), 3835-3853 (2011).
  9. Yu, B. C., Shirai, Y., Tour, J. M. Syntheses of new functionalized azobenzenes for potential molecular electronic devices. Tetrahedron. 62 (44), 10303-10310 (2006).
  10. Priewisch, B., Rück-Braun, K. Efficient Preparation of Nitrosoarenes for the Synthesis of Azobenzenes. The Journal of Organic Chemistry. 70 (6), 2350-2352 (2005).
  11. Wu, M. Y., He, W. W., Liu, X. Y., Tan, B. Asymmetric Construction of Spirooxindoles by Organocatalytic Multicomponent Reactions Using Diazooxindoles. Angewandte Chemie International Edition. 54 (32), 9409-9413 (2015).
  12. Sharma, P., Liu, R. S. [3+2]-Annulations of N-Hydroxy Allenylamines with Nitrosoarenes: One-Pot Synthesis of Substituted Indole Products. Organic Letters. 18 (3), 412-415 (2016).
  13. Wróbel, Z., Stachowska, K., Grudzień, K., Kwast, A. N-Aryl-2-nitrosoanilines as Intermediates in the Two-Step Synthesis of Substituted 1,2-Diarylbenzimidazoles from Simple Nitroarenes. Synlett. 22 (10), 1439-1443 (2011).
  14. Oakdale, J. S., Sit, R. K., Fokin, V. V. Ruthenium-Catalyzed Cycloadditions of 1-Haloalkynes with Nitrile Oxides and Organic Azides: Synthesis of 4-Haloisoxazoles and 5-Halotriazoles. Chemistry a European Journal. 20 (35), 11101-11110 (2014).
  15. Abbiati, G., Arcadi, A., Marinelli, F., Rossi, E. Sequential Addition and Cyclization Processes of α,β-Ynones and α,β-Ynoates Containing Proximate Nucleophiles. Synthesis. 46 (6), 687-721 (2014).
  16. Zhang, Z., et al. Chiral Co(II) complex catalyzed asymmetric Michael reactions of β-ketoamides to nitroolefins and alkynones. Tetrahedron Letters. 55 (28), 3797-3801 (2014).
  17. Bella, M., Jørgensen, K. A. Organocatalytic Enantioselective Conjugate Addition to Alkynones. Journal of the American Chemical Society. 126 (18), 5672-5673 (2004).
  18. Karpov, A. S., Merkul, E., Rominger, F., Müller, T. J. J. Concise Syntheses of Meridianins by Carbonylative Alkynylation and a Four-Component Pyrimidine Synthesis. Angewandte Chemie Internationa Edition. 44 (42), 6951-6956 (2005).
  19. Krebs, O. . Dissertation, Wurzburg. , (2002).
  20. Mel’nikov, E. B., Suboch, G. A., Belyaev, E. Y. Oxidation of Primary Aromatic Amines, Catalyzed by Tungsten Compounds. Russian Journal of Organic Chemistry. 31 (12), 1640-1642 (1995).
  21. Porta, F., Prati, L. Catalytic synthesis of C-nitroso compounds by cis-Mo(O)2(acac)2. Journal of Molecular Catalysis. A: Chemical. 157 (1-2), 123-129 (2000).
  22. Biradar, A. V., Kotbagi, T. V., Dongare, M. K., Umbarkar, S. B. Selective N-oxidation of aromatic amines to nitroso derivatives using a molybdenum acetylide oxo-peroxo complex as catalyst. Tetrahedron Letters. 49 (22), 3616-3619 (2008).
  23. Defoin, A. Simple Preparation of Nitroso Benzenes and Nitro Benzenes by Oxidation of Anilines with H2O2 Catalysed with Molybdenum Salts. Synthesis. 36 (5), 706-710 (2004).
  24. Zhao, D., Johansson, M., Bäckvall, J. E. In Situ Generation of Nitroso Compounds from Catalytic Hydrogen Peroxide Oxidation of Primary Aromatic Amines and Their One-Pot Use in Hetero-Diels-Alder Reactions. European Journal of Organic Chemistry. (26), 4431-4436 (2007).
  25. Pigge, F. C., et al. Structural characterization of crystalline inclusion complexes formed from 1,3,5-triaroylbenzene derivatives-a new family of inclusion hosts. Journal of Chemical Society, Perkin Transactions 2. (12), 2458-2464 (2000).
  26. Scansetti, M., Hu, X., McDermott, B., Lam, H. W. Synthesis of Pyroglutamic Acid Derivatives via Double Michael Reactions of Alkynones. Organic Letters. 9 (11), 2159-2162 (2007).
  27. Ge, G. C., Mo, D. L., Ding, C. H., Dai, L. X., Hou, X. L. Palladacycle-Catalyzed Reaction of Bicyclic Alkenes with Terminal Ynones: Regiospecific Synthesis of Polysubstituted Furans. Organic Letters. 14 (22), 5756-5759 (2012).
  28. Maeda, Y., et al. Oxovanadium Complex-Catalyzed Aerobic Oxidation of Propargylic Alcohols. The Journal of Organic Chemistry. 67 (19), 6718-6724 (2002).
  29. Gribble, G. W. . Indole Ring Synthesis: from Natural Products to Drug Discovery. , (2016).
  30. Palmisano, G., et al. Synthesis of Indole Derivatives with Biological Activity by Reactions Between Unsaturated Hydrocarbons and N-Aromatic Precursors. Current Organic Chemistry. 14 (20), 2409-2441 (2010).
  31. Youn, S. W., Ko, T. Y. Metal-Catalyzed Synthesis of Substituted Indoles. Asian Journal of Organic Chemistry. 7 (8), 1467-1487 (2018).
  32. Bugaenko, D. I., Karchava, A. V., Yurovskaya, M. A. Synthesis of indoles: recent advances. Russian Chemical Reviews. 88 (2), 99-159 (2019).
  33. Kuo, C. C., et al. BPR0L075, a Novel Synthetic Indole Compound with Antimitotic Activity in Human Cancer Cells, Exerts Effective Antitumoral Activity in Vivo. Recherche en cancérologie. 64 (13), 4621-4628 (2004).
  34. Kaushik, N. K., et al. Biomedical Importance of Indoles. Molecules. 18 (6), 6620-6662 (2013).
  35. El Sayed, M. T., Hamdy, N. A., Osman, D. A., Ahmed, K. M. Indoles as anti-cancer agents. Advances in Modern Oncology Research. 1 (1), 20-35 (2015).
  36. Somei, M., et al. The Chemistry of 1-Hydroxyindole Derivatives: Nucleophilic Substitution Reactions on Indole Nucleus. Heterocycles. 34 (10), 1877-1884 (1992).
  37. Somei, M., Fukui, Y. Nucleophilic Substitution Reaction of 1-Hydroxytryptophan and 1-Hydroxytryptamine Derivatives (Regioselective Syntheses of 5-Substituted Derivatives of Tryptophane and Tryptamine. Heterocycles. 36 (8), 1859-1866 (1993).
  38. Somei, M., Fukui, Y., Hasegawa, M. Preparations of Tryptamine-4,5-dinones, and Their Diels-Alder and Nucleophilic Addition Reactions. Heterocycles. 41 (10), 2157-2160 (1995).
  39. Somei, M. The Chemistry of 1-Hydroxyindoles and Their Derivatives. Journal of Synthetic Organic Chemistry (Japan). 49 (3), 205-217 (1991).
  40. Rani, R., Granchi, C. Bioactive heterocycles containing endocyclic N-hydroxy groups. European Journal of Medicinal Chemistry. 97, 505-524 (2015).
  41. Escolano, C. Stephacidin B, the avrainvillamide dimer: a formidable synthetic challenge. Angewandte Chemie, International Edition. 44 (47), 7670-7673 (2005).
  42. Blunt, J. W., Munro, M. H. G. Coproverdine, a Novel, Cytotoxic Marine Alkaloid from a New Zealand Ascidian Sylvia Urban. Journal of Natural Products. 65 (9), 1371-1373 (2002).
  43. Li, W., Huang, S., Liu, X., Leet, J. E., Cantone, J., Lam, K. S. N-Demethylation of nocathiacin I via photo-oxidation. Bioorganic and Medicinal Chemistry Letters. 18 (14), 4051-4053 (2008).
  44. Tsukamoto, S., et al. Notoamides F-K, Prenylated Indole Alkaloids Isolated from a Marine-Derived Aspergillus sp. Journal of Natural Products. 71 (12), 2064-2067 (2008).
  45. Nicolaou, K. C., Lee, S. H., Estrada, A. A., Zak, M. Construction of Substituted N-Hydroxyindoles: Synthesis of a Nocathiacin I Model System. Angewandte Chemie, International Edition. 44 (24), 3736-3740 (2005).
  46. Nicolaou, K. C., Estrada, A. A., Lee, S. H., Freestone, G. C. Synthesis of Highly Substituted N-Hydroxyindoles through 1,5-Addition of Carbon Nucleophiles to In Situ Generated Unsaturated Nitrones. Angewandte Chemie, International Edition. 45 (32), 5364-5368 (2006).
  47. Nicolaou, K. C., Estrada, A. A., Freestone, G. C., Lee, S. H., Alvarez-Mico, X. New synthetic technology for the construction of N-hydroxyindoles and synthesis of nocathiacin I model systems. Tetrahedron. 63 (27), 6088-6114 (2007).
  48. Chan, S. T. S., Norrie Pearce, A., Page, M. J., Kaiser, M., Copp, B. R. Antimalarial β-Carbolines from the New Zealand Ascidian Pseudodistoma opacum. Journal of Natural Products. 74 (9), 1972-1979 (2011).
  49. Bartsch, A., Bross, M., Spiteller, P., Spiteller, M., Steglich, W. Birnbaumin A and B: Two Unusual 1-Hydroxyindole Pigments from the “Flower Pot Parasol” Leucocoprinus birnbaumii. Angewandte Chemie., International Edition. 44 (19), 2957-2959 (2005).
  50. Di Bussolo, V., et al. Synthesis and biological evaluation of non-glucose glycoconjugated N-hydroyxindole class LDH inhibitors as anticancer agents. RSC Advances. 5 (26), 19944-19954 (2015).
  51. Granchi, C., et al. Discovery of N-Hydroxyindole-Based Inhibitors of Human Lactate Dehydrogenase Isoform A (LDH-A) as Starvation Agents against Cancer Cells. Journal of Medicinal Chemistry. 54 (6), 1599-1612 (2011).
  52. Granchi, C., et al. N-Hydroxyindole-based inhibitors of lactate dehydrogenase against cancer cell proliferation. European Journal of Medicinal Chemistry. 46 (11), 5398-5407 (2011).
  53. Granchi, C., et al. Synthesis of sulfonamide-containing N-hydroxyindole-2-carboxylates as inhibitors of human lactate dehydrogenase-isoform 5. Bioorganic Medicinal Chemistry Letters. 21 (24), 7331-7336 (2011).
  54. Granchi, C., et al. Assessing the differential action on cancer cells of LDH-A inhibitors based on the N-hydroxyindole-2-carboxylate (NHI) and malonic (Mal) scaffolds. Organic Biomolecular Chemistry. 11 (38), 6588-6596 (2013).
  55. Minutolo, F., et al. Compounds Inhibitors of Enzyme Lactate Dehydrogenase (LDH) and Pharmaceutical Compositions Containing These Compounds. Chemical Abstracts. , 154 (2011).
  56. Granchi, C., et al. Triazole-substituted N-hydroxyindol-2-carboxylates as inhibitors of isoform 5 of human lactate dehydrogenase (hLDH5). Medicinal Chemistry Communications. 2 (7), 638-643 (2011).
  57. Kuethe, J. T. A General Approach to Indoles: Practical Applications for the Synthesis of Highly Functionalized Pharmacophores. Chimia. 60 (9), 543-553 (2006).
  58. Somei, M. 1-Hydroxyindoles. Heterocycles. 50 (2), 1157-1211 (1999).
  59. Belley, M., Beaudoin, D., Duspara, P., Sauer, E., St-Pierre, G., Trimble, L. A. Synthesis and Reactivity of N-Hydroxy-2-Amino-3-Arylindoles. Synlett. 18 (19), 2991-2994 (2007).
  60. Belley, M., Sauer, E., Beaudoin, D., Duspara, P., Trimble, L. A., Dubé, P. Synthesis and reactivity of N-hydroxy-2-aminoindoles. Tetrahedron Letters. 47 (2), 159-162 (2006).
  61. Hasegawa, M., Tabata, M., Satoh, K., Yamada, F., Somei, M. A Novel Dimerization of 1-Hydroxyindoles. Heterocycles. 43 (11), 2333-2336 (1996).
  62. Tollari, S., Penoni, A., Cenini, S. The unprecedented detection of the intermediate formation of N-hydroxy derivatives during the carbonylation of 2′-nitrochalcones and 2-nitrostyrenes catalysed by palladium. Journal of Molecular Catalysis A: Chemical. 152 (1-2), 47-54 (2000).
  63. Penoni, A., Nicholas, K. M. A novel and direct synthesis of indoles via catalytic reductive annulation of nitroaromatics with alkynes. Chemical Communication. 38 (5), 484-485 (2002).
  64. Penoni, A., Volkman, J., Nicholas, K. M. Regioselective Synthesis of Indoles via Reductive Annulation of Nitrosoaromatics with Alkynes. Organic Letters. 4 (5), 699-701 (2002).
  65. Penoni, A., Palmisano, G., Broggini, G., Kadowaki, A., Nicholas, K. M. Efficient Synthesis of N-Methoxyindoles via Alkylative Cycloaddition of Nitrosoarenes with Alkynes. The Journal of Organic Chemistry. 71 (2), 823-825 (2006).
  66. Ieronimo, G., et al. A simple, efficient, regioselective and one-pot preparation of N-hydroxy- and N-O-protected hydroxyindoles via cycloaddition of nitrosoarenes with alkynes. Synthetic scope, applications and novel by-products. Tetrahedron. 69 (51), 10906-10920 (2013).
  67. Penoni, A., Palmisano, G., Zhao, Y. L., Houk, K. N., Volkman, J., Nicholas, K. M. On the Mechanism of Nitrosoarene-Alkyne Cycloaddition. Journal of the American Chemical Society. 131 (2), 653-661 (2009).
  68. Tibiletti, F., et al. One-pot synthesis of meridianins and meridianin analogues via indolization of nitrosoarenes. Tetrahedron. 66 (6), 1280-1288 (2010).
  69. Walker, S. R., Carter, E. J., Huff, B. C., Morris, J. C. Variolins and Related Alkaloids. Chemical Reviews. 109 (7), 3080-3098 (2009).
  70. Walker, S. R., Czyz, M. L., Morris, J. C. Concise Syntheses of Meridianins and Meriolins Using a Catalytic Domino Amino-Palladation Reaction. Organic Letters. 16 (3), 708-711 (2014).
  71. Tibiletti, F., Penoni, A., Palmisano, G., Maspero, A., Nicholas, K. M., Vaghi, L. (1H-Benzo[d][1,2,3]triazol=1-yl)(5-bromo-1-hydroxy-1H-indol-3-yl)methanone. Molbank. 2014 (3), 829 (2014).
  72. Ieronimo, G., et al. A novel synthesis of N-hydroxy-3-aroylindoles and 3-aroylindoles. Organic Biomolecular Chemistry. 16 (38), 6853-6859 (2018).
  73. Chen, Y. F., Chen, J., Lin, L. J., Chuang, G. J. Synthesis of Azoxybenzenes by Reductive Dimerization of Nitrosobenzene. The Journal of Organic Chemistry. 82 (21), 11626-11630 (2017).
  74. Beaudoin, D., Wuest, J. D. Dimerization of Aromatic C-Nitroso Compounds. Chemical Reviews. 116 (1), 258-286 (2016).
  75. EL-Atawy, M. A., Formenti, D., Ferretti, F., Ragaini, F. Synthesis of 3,6-Dihydro-2H-[1, 2]-Oxazines from Nitroarenes and Conjugated Dienes, Catalyzed by Palladium/Phenanthroline Complexes and Employing Phenyl Formate as a CO Surrogate. ChemCatChem. 10 (20), 4707-4717 (2018).
  76. Formenti, D., Ferretti, F., Ragaini, F. Synthesis of N-Heterocycles by Reductive Cyclization of Nitro Compounds using Formate Esters as Carbon Monoxide Surrogates. ChemCatChem. 10 (1), 148-152 (2018).
  77. EL-Atawy, M. A., Ferretti, F., Ragaini, F. A Synthetic Methodology for Pyrroles from Nitrodienes. European Journal of Organic Chemistry. (34), 4818-4825 (2018).
  78. Ragaini, F., Cenini, S., Brignoli, D., Gasperini, M., Gallo, E. Synthesis of oxazines and N-arylpyrroles by reaction of unfunctionalized dienes with nitroarenes and carbon monoxide, catalyzed by palladium-phenanthroline complexes. The Journal of Organic Chemistry. 68 (2), 460-466 (2003).
check_url/fr/60201?article_type=t

Play Video

Citer Cet Article
Scapinello, L., Maspero, A., Tollari, S., Palmisano, G., Nicholas, K. M., Penoni, A. A Direct, Regioselective and Atom-Economical Synthesis of 3-Aroyl-N-hydroxy-5-nitroindoles by Cycloaddition of 4-Nitronitrosobenzene with Alkynones. J. Vis. Exp. (155), e60201, doi:10.3791/60201 (2020).

View Video