Summary

造血干细胞代谢分析

Published: November 09, 2019
doi:

Summary

造血干细胞(HSPCs)由于血液形成过程中的代谢可塑性,从静止状态过渡到分化状态。在这里,我们提出了一个优化的方法,用于测量线粒体呼吸和HSPCs的糖解。

Abstract

造血干细胞(HSPCs)具有明显的代谢可塑性,允许它们从静止状态过渡到分化状态,以维持血液形成的需求。然而,由于HSPC数量有限,并且缺乏针对非粘附性、易碎HSPCs的优化方案,因此很难分析HSPC的代谢状态(线粒体呼吸和糖解)。在这里,我们提供一套清晰、分步的指示,以测量代谢呼吸(耗氧率;OCR)和糖解(细胞外酸化率;ECAR) 的鼠骨髓-血统内格Sca1+c-Kit= (LSK) HSPCs。该协议从小鼠骨髓中提供更高量的LSK HSPCs,提高孵育期间HSPCs的生存能力,促进非粘附性HSPCs的细胞外通量分析,并为针对氧化磷酸化和糖解途径的药物提供优化的注射方案(浓度和时间)。该方法能够预测血液发育和疾病期间的代谢状态和HSPCs的健康。

Introduction

由于大多数成熟血细胞的寿命较短,血液的平衡依赖于长寿但罕见的造血干细胞(HSPCs)1的自我更新和分化。HSPC是静止的,但它们在刺激下迅速增殖和分化,以维持血液系统的需求。由于每个HSPC细胞状态都需要独特的生物能量需求,代谢变化是HSPC命运决定的关键驱动因素。因此,代谢可塑性的损失,通过改变HSPCs的静止、自我更新和分化之间的平衡,往往导致骨髓或淋巴增殖性疾病。总之,对HSPC发育的代谢调节的理解对于发现血液恶性肿瘤2、3、4、5的深层机制至关重要。

线粒体呼吸和糖解产生ATP,以推动细胞内反应,并产生大分子合成所需的构建基块。由于HSPCs与分化细胞6相比线粒体质量较低,并且它们在低氧骨髓利基中维持静止,因此HSPCs主要依靠糖解。HSPCs的激活增强了其线粒体代谢,导致静止的丧失和随后进入细胞周期。HSPC的这种代谢可塑性允许在整个成人寿命6,7,8,9,10,11,12期间维持HSPC池。因此,分析HSPC活化和健康状况,必须研究其代谢活动,如耗氧率(OCR;氧化磷酸化指数)和细胞外酸化率(ECAR;糖解指数)。OCR 和 ECAR 都可以使用细胞外通量分析仪进行实时测量。然而,目前的方法需要大量的细胞,并针对附着细胞13进行了优化。由于HSPC不能从小鼠14中大量分离,需要分拣才能获得纯种群,是非粘附细胞15,并且不能在一夜之间培养,而不避免分化16,因此很难测量HSPC的OCR和ECAR。在这里,我们提供一组清晰的分步说明,以伴随视频教程如何测量代谢呼吸和糖解的几千个小鼠骨髓-血统negSca1+c-Kit+ (LSK) HSPCs。

Protocol

该协议得到了全国儿童医院动物护理和使用委员会(IACUC)的批准。 注:协议按时间顺序描述,时间顺序跨越两天。使用如下协议中所述的新鲜试剂。 1. 在测定前一天制备试剂 水化传感器盒。 在非CO2 37°C培养箱中孵育5mL的校准(材料表)。 打开助焊剂检测套件(材料表),</st…

Representative Results

我们的提取方法允许我们每只小鼠收获高达 80,000 个 LSK HSPC。LSK细胞的存活性和数量通过我们的方法得到了提高,因为我们:(1)将上肢和下肢、髋骨、胸骨、肋骨、肋骨和脊柱的骨髓组合在一起,(2)避免使用红细胞裂化缓冲液,这将增加细胞死亡和结块,(3)使用单核细胞的密度梯度介质分离,避免使用预冷却缓冲液,这会导致团块中兴趣细胞的丧失。 虽然细胞外通?…

Discussion

在这里,我们演示了最大数量的纯和活的鼠LSK HSPCs种群的分离,以及使用细胞外通量分析仪测量其糖解和线粒体呼吸。具体来说,该协议克服了使用LSK HSPCs的下列技术问题:i) LSK HSPCs在小鼠骨髓14中的低频率,ii) LSK HSPCs26的低基础代谢活性,iii) LSK HSPCs27的脆弱;iv) LSK HSPCs 不粘附于培养容器15。此外,我们还优化了药物浓…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到了国家卫生研究院(HL131645、CA016058)、圣巴尔德里克基金会和佩洛多尼亚基金会的资助支持。

Materials

0.01% (w/v) poly-L-lysine solution Sigma P8920 Used for LSK attachment
40 µm cell strainer Fisher Scientific 22-363-547 Used for cell filtration after bone crushing
Anti-Biotin MicroBeads Miltenyi 130-090-485 Used for Lin- separation
Biotin Rat Anti-Mouse CD45R/B220 Clone RA3-6B2 BD Biosciences 553086 Used for Lin- separation
Biotin Rat Anti-Mouse CD5 Clone 53-7.3 BD Biosciences 553019 Used for Lin- separation
Biotin Rat Anti-Mouse CD8a Clone 53-6.7 BD Biosciences 553029 Used for Lin- separation
Biotin Rat Anti-Mouse Ly-6G and Ly-6C Clone RB6-8C5 BD Biosciences 553125 Used for Lin- separation
Biotin Rat Anti-Mouse TER-119/Erythroid Cells Clone TER-119 BD Biosciences 553672 Used for Lin- separation
CD117 (c-Kit) Monoclonal Antibody (2B8), APC eBioscience 17-1171-83 Used for LSK sorting
Falcon 15 ml Conical Centrifuge Tubes Falcon-Fischer Scientific 14-959-53A Used in cell isolation
Falcon 50 ml Conical Centrifuge Tubes Falcon-Fischer Scientific 14-432-22 Used in cell isolation
Falcon Round-Bottom Polypropylene Tubes Falcon-Fischer Scientific 14-959-11A Used for LSK sorting
Fetal Bovine Serum Neuromics FBS001-HI Used in FACS buffer
Histopaque-1083 Sigma 10831 Used for ficoll gradient separation
L-glutamine 100x Fisher Scientific 25-030-081 Used for the assay media
LS Column Miltenyi 130-042-401 Used for Lin- separation
Ly-6A/E (Sca-1) Monoclonal Antibody (D7), PE-Cyanine7 eBioscience 25-5981-82 Used for LSK sorting
Murine Stem Cell Factor (SCF) PeproTech 250-03-100UG Used for the assay media
Murine Thrombopoietin (TPO) PeproTech 315-14-100UG Used for the assay media
PBS 1% Fisher Scientific SH3002802 Used for FACS buffer
Penicillin-Streptomycin (10,000 U/mL) Fisher Scientific 15140122 Used for the assay media
Propidium Iodide Fisher Scientific P1304MP Used for LSK sorting
Seahorse XFp Cell Culture Miniplate Agilent Technologies 103025-100 Used for LSK seeding
Sodium Pyruvate (100 mM) ThermoFisher 11360070 Used for the assay media
Streptavidin eFluor 450 Conjugate eBioscience 48-4317-82 Used for LSK sorting
XF Calibrant Agilent Technologies 100840-000 Used for cartridge equilibration
XF media Agilent Technologies 103575-100 Used for the assay media
XFp Glycolysis Stress Test Kit Agilent Technologies 103017100 Drugs for glycolysis stress test
XFp Mitochondrial Stress Test Kit Agilent Technologies 103010100 Drugs for mitochondrial stress test
XFp Sensor Cartridge Agilent Technologies 103022-100 Used for glycolysis and mitochondrial stress test

References

  1. Dharampuriya, P. R., et al. Tracking the origin, development, and differentiation of hematopoietic stem cells. Current Opinion in Cell Biology. 49, 108-115 (2017).
  2. Wilkinson, A. C., Yamazaki, S. The hematopoietic stem cell diet. International Journal of Hematology. 107, 634-641 (2018).
  3. Kohli, L., Passegue, E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends in Cell Biology. 24, 479-487 (2014).
  4. Abdel-Wahab, O., Levine, R. L. Metabolism and the leukemic stem cell. The Journal of Experimental Medicine. 207, 677-680 (2010).
  5. Papa, L., Djedaini, M., Hoffman, R. Mitochondrial Role in Stemness and Differentiation of Hematopoietic Stem Cells. Stem Cells International. 2019, 4067162 (2019).
  6. Vannini, N., et al. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nature Communication. 7, 13125 (2016).
  7. Anso, E., et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nature Cell Biology. 19, 614-625 (2017).
  8. Wanet, A., Arnould, T., Najimi, M., Renard, P. Connecting Mitochondria, Metabolism, and Stem Cell Fate. Stem Cells and Development. 24, 1957-1971 (2015).
  9. Maryanovich, M., et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nature Communication. 6, 7901 (2015).
  10. Suda, T., Takubo, K., Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 9, 298-310 (2011).
  11. Zhang, C. C., Sadek, H. A. Hypoxia and metabolic properties of hematopoietic stem cells. Antioxidants & Redox Signaling. 20, 1891-1901 (2014).
  12. Snoeck, H. W. Mitochondrial regulation of hematopoietic stem cells. Current Opinion in Cell Biology. 49, 91-98 (2017).
  13. Wu, M., et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. American Journal of Physiology-Cell Physiology. 292, 125-136 (2007).
  14. Chen, J., et al. Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Experimental Hematology. 36, 1236-1243 (2008).
  15. Jung, Y., et al. Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells. 26, 2042-2051 (2008).
  16. Masuda, S., Li, M., Izpisua Belmonte, J. C. Niche-less maintenance of HSCs by 2i. Cell Research. 23, 458-459 (2013).
  17. Anderson, H., et al. Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood. 126, 2811-2820 (2015).
  18. Lo Celso, C., Scadden, D. Isolation and transplantation of hematopoietic stem cells (HSCs). Journal of Visualized Experiment. (157), (2007).
  19. Van Wyngene, L., Vandewalle, J., Libert, C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last. EMBO Molecular Medicine. 10, (2018).
  20. Olson, K. A., Schell, J. C., Rutter, J. Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies. Trends in Biochemical Sciences. 41, 219-230 (2016).
  21. Halestrap, A. P., Wilson, M. C. The monocarboxylate transporter family–role and regulation. IUBMB Life. 64, 109-119 (2012).
  22. Kim, A. Mitochondria in Cancer Energy Metabolism: Culprits or Bystanders. Toxicological Research. 31, 323-330 (2015).
  23. Fosslien, E. Mitochondrial medicine–molecular pathology of defective oxidative phosphorylation. Annals of Clinical & Laboratory Science. 31 (1), 25-67 (2001).
  24. Wick, A. N., Nakada, H. I., Wolfe, J. B. Localization of the primary metabolic block produced by 2-deoxyglucose. The Journal of Biological Chemistry. 224 (2), 963-969 (1957).
  25. Linnett, P. E., Beechey, R. B. Inhibitors of the ATP synthetase systems. Methods in Enzymology. 55, 472-518 (1979).
  26. Rimmele, P., et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Reports. 16, 1164-1176 (2015).
  27. Riviere, I., Dunbar, C. E., Sadelain, M. Hematopoietic stem cell engineering at a crossroads. Blood. 119, 1107-1116 (2012).
  28. Ito, K., Suda, T. Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews Molecular Cell Biology. 15 (4), 243-256 (2014).

Play Video

Citer Cet Article
Scapin, G., Goulard, M. C., Dharampuriya, P. R., Cillis, J. L., Shah, D. I. Analysis of Hematopoietic Stem Progenitor Cell Metabolism. J. Vis. Exp. (153), e60234, doi:10.3791/60234 (2019).

View Video