Summary

通过甲基异硫清除和三D成像探索脂肪组织结构

Published: August 19, 2020
doi:

Summary

在这里,我们描述了一种简单、廉价和快速的清除方法,通过荧光成像,使用标记的组合来可视化血管、核、免疫细胞、神经元和脂滴涂层蛋白,从而解析小鼠和人类白色脂肪组织的 3D 结构。

Abstract

肥胖是一个主要的全球公共卫生问题,增加了患心血管疾病、2型糖尿病和肝病的风险。肥胖症的特点是脂肪组织 (AT) 质量增加,由于脂肪细胞增生和/或肥大,导致其三维结构的深刻重塑。事实上,在肥胖期间,AT的最大扩张能力对于肥胖相关病理学的发展至关重要。这种 AT 膨胀是一种重要的恒向机制,能够适应过多的能量摄入,并避免有害脂质溢出到其他代谢器官,如肌肉和肝脏。因此,了解导致 AT 扩展失败的结构重塑是临床适用性高的根本问题。在这篇文章中,我们描述了一种简单而快速的清除方法,在我们的实验室中经常使用这种方法,通过荧光成像来探索小鼠和人类白色脂肪组织的形态。这种优化的AT清除方法在任何配备化学罩、温度控制轨道摇床和荧光显微镜的标准实验室中都很容易实现。此外,使用的化合物是现成的。重要的是,此方法允许人们通过染色各种标记来专门可视化腺细胞、神经元和血管网络以及先天和自适应免疫细胞分布来解析 3D AT 结构。

Introduction

肥胖症的特点是脂肪组织质量增加,并已成为一个重大的全球公共卫生问题,因为肥胖者患心血管疾病、2型糖尿病、肝病和一些癌症的风险增加。

脂肪组织的基本生理功能是调节全身葡萄糖和脂质平衡1,2。1,在喂养期间,脂肪细胞(即脂肪组织的主要细胞)将膳食提供的葡萄糖和脂质的过量储存到甘油三酯中。在禁食过程中,脂肪细胞将甘油三酯分解成非酯化脂肪酸和甘油,以维持身体的能量需求。在肥胖症的发育过程中,脂肪组织通过增加脂肪细胞的大小(肥大)和/或(增生)数量来扩大脂肪细胞1,以增加其储存能力。当脂肪组织的膨胀达到其极限时,患者中一个恒定的极易变量,剩余的脂质会积聚到其他代谢器官,包括肌肉和肝脏3、4,4导致其功能衰竭,并引发肥胖相关的心代谢并发症1,1,5。因此,确定控制脂肪组织扩张的机制是临床的关键挑战。

肥胖期间在脂肪组织内记录的形态修饰与其病理功能障碍有关。一些染色程序已经被用来描述脂肪组织的组织,包括行为素6,血管标记7,脂滴标记8,和特定的免疫细胞标记9,9,10。然而,由于脂肪细胞(50至200μm)的巨大直径11,因此必须从三维分析整个组织的很大一部分,以便准确分析肥胖期间观察到的戏剧性的结构 AT 变化。然而,由于光线不穿透不透明组织,因此不可能使用荧光显微镜在大型组织样本中进行3D成像。组织清除方法,使其透明已经报告在文献(审查,见12),允许一个人清除组织,并执行深入,整个组织荧光显微镜。这些方法为评估健康和患病组织中的 3D 细胞组织提供了前所未有的机会。每种描述的方法都有优点和缺点,因此需要根据所研究的组织仔细选择(如要回顾,见13)。事实上,有些方法需要长时间的潜伏期和/或使用昂贵,、有毒或难以获得的材料或化合物,例如14、15、16、17、18、19。,1516,17,18,19利用一个世纪前沃纳·斯帕尔特霍尔茨(Werner Spalteholz)用于清除组织20的第一批化合物之一,我们建立了一个用户友好且价格低廉的协议,非常适用于清除任何实验室中所有小鼠和人类脂肪组织库,这些实验室具有典型的设备,包括化学罩、温度控制轨道摇床和共生显微镜。

Protocol

该协议已经过测试,并验证了所有小鼠和人类白色脂肪组织库。人类和小鼠脂肪组织是根据欧洲法律收集的,并经法国和瑞典伦理委员会批准。 1. 小鼠和人类白色脂肪组织的固定 将收获的小鼠或人类白色脂肪组织浸入至少 10 mL 的 PBS 中,其中含有 4% 的甲醛 (PFA) 在 15 mL 塑料管中。 在室温下在滚动板上摇动塑料管 1 小时。 将塑料管在 4°C 下放在滚动?…

Representative Results

使用此处描述和图1 中总结的程序,我们能够分别对图2A 和图 2B中所示的人类和小鼠白色脂肪组织进行污渍和光学清除。清除的组织被转移到金属成像室进行共体成像(图3A)。清除极大地改善了我们能够获取的组织图像的深度(图3B和图3C)。使用 4 倍目标(参?…

Discussion

脂肪组织内在病理进展过程中发生的改变,如肥胖,对于理解病理背后的机制至关重要。揭示脂肪组织中这种机制的开创性研究基于全球方法,如全脂肪组织蛋白质组学21、流细胞学,22、23和转录组学24、25。,2522此外,还利用组织,学分析26、27、28、29,,<sup c…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 INSERM 的支持, 蔚蓝海岸大学,以及法国国家研究机构(ANR)通过未来实验室信号投资(ANR-11-LABX-0028-01)的资助,通过第2学院”Systémes复合体”和学院4″复杂与多样性”项目UCA JEDI(ANR-15-IDEX-01) Médical基金会(+quipe FRM DEQ20180839587)和J.G.青年调查员计划(ANR18-CE14-0035-01-GILLERON)。我们还感谢由阿尔卑斯海洋局和Région PACA委员会资助的C3M成像核心设施,该设施也得到IBISA显微镜和成像平台Céte d’Azur(MICA)的支持。我们感谢马里恩·杜索在组织准备方面提供的技术帮助。我们感谢艾比·卡特里斯,UCA国际科学能见度,为手稿的校对阅读。

Materials

1.5 mL microtubes Eppendorff tubes – Dutscher 33528
15 mL plastic tubes Falcon tubes – Dutscher 352096
18 mm round glass coverslip Mariendfeld 0117580
20 mL glass bottle Wheaton 986546
anti-mouse-alexa647-conjugated antibody Jackson ImmunoResearch 715-605-150 Dilution: 1/100
anti-rabbit-alexa647-conjugated antibody Jackson ImmunoResearch 711-605-152 Dilution: 1/100
BSA Sigma-aldrich A6003
CD301-PE antibody Biolegend BLE145703 Dilution: 1/100
CD31 antibody AbCam ab215912 Dilution: 1/50
Commercial 3D analysis software – IMARIS Oxford instrument with Cell module
Confocal microscope – Nikon A1R Nikon
Dapi ThermoFisher D1306 Stock Concentration: 5 mg/mL; dilution 1/1000
Deoxycholate Sigma-aldrich D6750
DMSO Sigma-aldrich D8418
Glut4 antibody Santa Cruz sc-53566 Dilution: 1/50
Glycine Sigma-aldrich G7126
Lectin-DyLight649 Vector Lab DL-1178-1 Stock Concentration : 2 µg/µL; IV Injection: 50 µL/mice
Metallic imaging chamber equipped with glass bottom – AttoFluor Chamber Thermofisher A7816
Methyl salicylate Sigma-aldrich M6752
Perilipin antibody Progen 651156 Dilution: 1/50
Phalloidin-alexa488 ThermoFisher A12379 Dilution: 1/100
TCR-β-PB antibody Biolegend BLE109225 Dilution: 1/100
TH antibody AbCam ab112 Dilution: 1/50
Triton X100 Sigma-aldrich X100
Tween-20 Sigma-aldrich P416

References

  1. Pellegrinelli, V., Carobbio, S., Vidal-Puig, A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 59 (6), 1075-1088 (2016).
  2. Stern, J. H., Rutkowski, J. M., Scherer, P. E. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metabolism. 23 (5), 770-784 (2016).
  3. Mittendorfer, B. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Current Opinion in Clinical Nutrition & Metabolic Care. 14 (6), 535-541 (2011).
  4. Hammarstedt, A., Gogg, S., Hedjazifar, S., Nerstedt, A., Smith, U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiological Reviews. 98 (4), 1911-1941 (2018).
  5. Moreno-Indias, I., Tinahones, F. J. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. Journal of Diabetes Research. 2015, 970375 (2015).
  6. Vergoni, B., et al. DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes. Diabetes. 65 (10), 3062-3074 (2016).
  7. Xue, Y., Xu, X., Zhang, X. Q., Farokhzad, O. C., Langer, R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proceedings of the National Academy of Sciences U S A. 113 (20), 5552-5557 (2016).
  8. Zwick, R. K., et al. Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation. Nature Communication. 9 (1), 3592 (2018).
  9. Zhang, L., et al. The inflammatory changes of adipose tissue in late pregnant mice. Journal of Molecular Endocrinology. 47 (2), 157-165 (2011).
  10. Yang, H., et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. Journal of Immunology. 185 (3), 1836-1845 (2010).
  11. Laforest, S., et al. Comparative analysis of three human adipocyte size measurement methods and their relevance for cardiometabolic risk. Obesity. 25 (1), 122-131 (2017).
  12. Azaripour, A., et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Progress in Histochemistry and Cytochemistry. 51 (2), 9-23 (2016).
  13. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  14. Chi, J., Crane, A., Wu, Z., Cohen, P. Adipo-Clear: A Tissue Clearing Method for Three-Dimensional Imaging of Adipose Tissue. Journal of Visualized Experiments. (137), e58271 (2018).
  15. Roberts, D. G., Johnsonbaugh, H. B., Spence, R. D., MacKenzie-Graham, A. Optical Clearing of the Mouse Central Nervous System Using Passive CLARITY. Journal of Visualized Experiments. (112), e540225 (2016).
  16. Woo, J., Lee, M., Seo, J. M., Park, H. S., Cho, Y. E. Optimization of the optical transparency of rodent tissues by modified PACT-based passive clearing. Experimental & Molecular Medicine. 48 (12), 274 (2016).
  17. Zhang, Y., et al. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy. Science Advances. 3 (8), 1700553 (2017).
  18. Ke, M. T., Imai, T. Optical clearing of fixed brain samples using SeeDB. Current Protocols in Neuroscience. 66, 22 (2014).
  19. Hahn, C., et al. High-resolution imaging of fluorescent whole mouse brains using stabilised organic media (sDISCO). Journal of Biophotonics. 12 (8), 201800368 (2019).
  20. Spalteholz, W., Hierzel, S. . Über das Durchsichtigmachen von Menchlichen und Tierichen Präparaten und Seine Theoretischen. , (1911).
  21. Shields, K. J., Wu, C. Differential Adipose Tissue Proteomics. Methods in Molecular Biology. 1788, 243-250 (2018).
  22. Bourlier, V., et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 117 (6), 806-815 (2008).
  23. Hagberg, C. E., et al. Flow Cytometry of Mouse and Human Adipocytes for the Analysis of Browning and Cellular Heterogeneity. Cell Reports. 24 (10), 2746-2756 (2018).
  24. Hill, D. A., et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proceedings of the National Academy of Sciences U S A. 115 (22), 5096-5105 (2018).
  25. Acosta, J. R., et al. Single cell transcriptomics suggest that human adipocyte progenitor cells constitute a homogeneous cell population. Stem Cell Research & Therapy. 8 (1), 250 (2017).
  26. Coppack, S. W. Adipose tissue changes in obesity. Biochemical Society Transactions. 33, 1049-1052 (2005).
  27. Cancello, R., et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 54 (8), 2277-2286 (2005).
  28. Cinti, S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. Journal of Endocrinology Investigation. 25 (10), 823-835 (2002).
  29. Wellen, K. E., Hotamisligil, G. S. Obesity-induced inflammatory changes in adipose tissue. Journal of Clinical Investigation. 112 (12), 1785-1788 (2003).
  30. Li, X., Mao, Z., Yang, L., Sun, K. Co-staining Blood Vessels and Nerve Fibers in Adipose Tissue. Journal of Visualized Experiments. (144), e59266 (2019).
  31. Gustafsson, N., et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nature Communication. 7, 12471 (2016).
check_url/fr/61640?article_type=t

Play Video

Citer Cet Article
Gilleron, J., Meziat, C., Sulen, A., Ivanov, S., Jager, J., Estève, D., Muller, C., Tanti, J., Cormont, M. Exploring Adipose Tissue Structure by Methylsalicylate Clearing and 3D Imaging. J. Vis. Exp. (162), e61640, doi:10.3791/61640 (2020).

View Video