Summary

Posizione, dissezione e analisi del Ganglio Stellato Murine

Published: December 22, 2020
doi:

Summary

I cambiamenti fisiopatologici nel sistema nervoso autonomo cardiaco, specialmente nel suo ramo simpatico, contribuiscono all’insorgenza e al mantenimento delle aritmie ventricolari. Nel presente protocollo, mostriamo come caratterizzare i gangli stellati murini per migliorare la comprensione dei processi molecolari e cellulari sottostanti.

Abstract

Il sistema nervoso autonomo è un importante driver dell’elettrofisiologia cardiaca. Soprattutto il ruolo del suo ramo simpatico è una questione di indagine in corso nella fisiopatologia delle aritmie ventricolari (VA). I neuroni nei gangli stellati (SG)   strutture bilaterali a forma di stella della catena simpatica   sono una componente importante dell’infrastruttura simpatica. L’SG è un obiettivo riconosciuto per il trattamento tramite denervazione cardiaca simpatica in pazienti con VA refrattaria-terapia. Mentre il rimodellamento neuronale e l’attivazione gliale nell’SG sono stati descritti nei pazienti con VA, i processi cellulari e molecolari sottostanti che potenzialmente precedono l’insorgenza dell’aritmia non sono solo sufficientemente compresi e devono essere chiariti per migliorare la modulazione autonomica. I modelli di topo ci permettono di studiare il rimodellamento neuronale simpatico, ma l’identificazione dell’SG murino è una sfida per l’investigatore inesperto. Pertanto, mancano studi biologici cellulari e molecolari approfonditi dell’SG murino per molte malattie cardiache comuni. Qui descriviamo un repertorio di base per la dissezione e lo studio dell’SG nei topi adulti per analisi a livello di RNA (isolamento dell’RNA per analisi dell’espressione genica, ibridazione in situ), livello proteico (colorazione immunofluorescente dell’intero supporto) e livello cellulare (morfologia di base, misurazione delle dimensioni delle cellule). Presentiamo potenziali soluzioni per superare le sfide nella tecnica di preparazione e come migliorare la colorazione attraverso la tempra dell’autofluorescenza. Ciò consente la visualizzazione di neuroni e cellule gliali tramite marcatori stabiliti al fine di determinare la composizione cellulare e i processi di rimodellamento. I metodi qui presentati consentono di caratterizzare l’SG per ottenere ulteriori informazioni sulla disfunzione autonoma nei topi inclini all’AV e possono essere integrati da tecniche aggiuntive che studiano i componenti neuronali e gliali del sistema nervoso autonomo nel cuore.

Introduction

Il sistema nervoso autonomo cardiaco è un equilibrio strettamente regolato di componenti simpatici, parasimpatici e sensoriali che consente al cuore di adattarsi ai cambiamenti ambientali con l’appropriata rispostafisiologica 1,2. Disturbi in questo equilibrio, ad esempio, un aumento dell’attività simpatica, sono stati stabiliti come driver chiave per l’insorgenza e il mantenimento delle aritmie ventricolari (VA)3,4. Pertanto, la modulazione autonoma, ottenuta attraverso la riduzione farmacologica dell’attività simpatica con beta-bloccanti, è stata una pietra miliare nel trattamento dei pazienti con VAper decenni 5,6. Ma nonostante gli interventi farmacologici e cateteri, un numero rilevante di pazienti soffre ancora di VA7 ricorrente.

L’input simpatico al cuore è per lo più mediato attraverso corpi cellulari neuronali nei gangli stellati (SG), strutture bilaterali a forma di stella della catena simpatica, che relè le informazioni attraverso numerosi nervi intratoracici dal tronco encefalicoal cuore 8,9,10. Il nervo che germoglia dall’SG dopo la lesione è associato all’AV e alla morte cardiacaimprovvisa 11,12,sottolineando l’SG come bersaglio per la modulazione autonomica13,14. Una riduzione dell’input simpatico al cuore può essere ottenuta temporaneamente tramite iniezione percutanea di anestetici locali o permanentemente mediante rimozione parziale dell’SG tramite toracoscopia video-assistita15,16. La denervazione cardiaca simpatica presenta un’opzione per i pazienti con VA refrattaria terapeuticacon risultati promettenti 14,16,17. Abbiamo imparato dall’SG estipeato di questi pazienti che il rimodellamento neuronale e neurochimico, la neuro-infiammazione e l’attivazione gliale sono segni distintivi del rimodellamento simpatico che potrebbe contribuire o aggravare la disfunzioneautonomica 18,19. Tuttavia, i processi cellulari e molecolari sottostanti in questi neuroni rimangono oscuri fino ad oggi, ad esempio il ruolo della transdifferenziazione neuronale in un fenotipo colinergico20,21. Studi sperimentali presentano nuovi approcci per trattare l’AV, ad esempio la riduzione dell’attività nervosa simpatica attraverso l’optogenetica22, ma la caratterizzazione approfondita dell’SG è ancora carente in molte patologie cardiache che vanno di pari passo con l’AV. I modelli di topo che imitano queste patologie consentono di studiare il rimodellamento neuronale che potenzialmente precede l’insorgenza delle aritmie12,23. Questi possono essere completati da ulteriori analisi morfologiche e funzionali per la caratterizzazione autonomica del cuore e del sistema nervoso. Nel presente protocollo, forniamo un repertorio di base di metodi che consentono di sezionare e caratterizzare l’SG murino per migliorare la comprensione dell’AV.

Protocol

Tutte le procedure riguardanti gli animali sono state approvate dal Comitato per la cura e l’uso degli animali dello Stato di Amburgo (ORG870, 959) e dall’Agenzia statale per la protezione della natura, dell’ambiente e dei consumatori del Nord Reno-Westfalia (LANUV, 07/11) e conformi alla Guida degli Istituti nazionali di sanità per la cura e l’uso degli animali da laboratorio (2011). Gli studi sono stati eseguiti utilizzando topi maschi e femmine (di età compresa tra 10 e 24 settimane) C57BL/6 (numero di serie 000664,…

Representative Results

La figura 1 mostra come identificare e sezionare la figura 1A di SG. I muscoli longus colli sinistro e destro mediano dall’SG e la gabbia toracica sono importanti punti di riferimento per l’orientamento. La dissezione viene eseguita lungo le linee tratteggiate tra i muscoli e la prima costola. L’SG e la catena simpatica diventano visibili come strutture bianche (Figura 1C). La figu…

Discussion

La comprensione dei processi cellulari e molecolari nei neuroni e nelle cellule gliali del sistema nervoso simpatico che precedono l’insorgenza dell’AV è di alto interesse, poiché l’arresto cardiaco improvviso rimane la causa più comune di morte intutto il mondo 5. Pertanto, nel manoscritto attuale, forniamo un repertorio di base di metodi per identificare l’SG murino – un elemento murino all’interno di questa rete – ed eseguire analisi successive a livello di RNA, proteine e cellulare.

<p …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Gli autori ringraziano Hartwig Wieboldt per la sua eccellente assistenza tecnica e l’UKE Microscopy Imaging Facility (Umif) dell’University Medical Center Hamburg-Eppendorf per aver fornito microscopi e supporto. Questa ricerca è stata finanziata dal DZHK (Centro tedesco per la ricerca cardiovascolare) [FKZ 81Z4710141].

Materials

96-well plate TPP 92097 RNAscope
Adhesion Slides SuperFrost plus  25 x 75 x 1 mm R. Langenbrinck 03-0060 Microscopy
Albumin bovine Fraction V receptor grade lyophil. Serva 11924.03 Whole mount staining
bisBenzimide H33342 trihydrochloride (Hoechst) Sigma-Aldrich, St. Louis, MO, USA B2261 Whole mount staining
Chicken anti neurofilament EMD Millipore AB5539 Whole mount staining
Dimethyl sulfoxide (DMSO) Merck, KGA, Darmstadt, Germany D8418 Whole mount staining
Donkey anti chicken IgY Alexa 647  Merck, KGA, Darmstadt, Germany AP194SA6 Whole mount staining
Donkey anti goat IgG Alexa 568  Thermo Fisher Scientific A11057 Whole mount staining
Donkey anti rabbit IgG Alexa 488  Thermo Fisher Scientific A21206 Whole mount staining
Drying block 37-100 mm Whatman (Sigma Aldrich) WHA10310992  Whole mount staining
Eosin Y Sigma Aldrich E4009 Whole mount staining
Ethanol 99 % denatured with MEK, IPA and Bitrex (min. 99,8 %) Th.Geyer 2212.5000 Whole mount staining
Eukitt mounting medium AppliChem 253681.0008 Whole mount staining
Fluoromount-G Southern Biotech 0100-01 Whole mount staining
Fluoromount-G + DAPI Southern Biotech 0100-20 Whole mount staining
Goat anti choline acetyltransferase EMD Millipore AP144P Whole mount staining
H2O2 30% (w/w) Merck, KGA, Darmstadt, Germany H1009 Whole mount staining
Heparin Sodium 25.000 UI / 5ml Rotexmedica PZN: 3862340 Preparation SG
High-capacity cDNA reverse transctiption kit Life technologies  4368813 RNA isolation
Isoflurane (Forene) Abbott Laboratories 2594.00.00 Preparation SG
Mayer's hemalum solution Merck 1.09249.0500 Whole mount staining
Methanol Sigma-Aldrich 34860 Whole mount staining
Microscope cover glasses 20×20 mm or smaller Marienfeld 0101040 Whole mount staining
miRNeasy Mini Kit Qiagen 217004 RNA isolation
NanoDrop 2000c Thermo Fisher Scientific ND-2000C RNA isolation
Opal 570 Reagent Pack Akoya Bioscience FP1488001KT RNAscope
Paraformaldehyde, 16% w/v aq. soln., methanol free  Alfa Aesar 43368 Whole mount staining
Pasteur pipettes, LDPE, unsterile, 3 ml, 154 mm Th.Geyer 7691202 Whole mount staining
Phosphate-buffered saline tablets Gibco 18912-014 Whole mount staining
Pinzette Dumont SS Forceps FineScienceTools 11203-25 Preparation SG
QIAzol Lysis Reagent Qiagen  79306 RNA isolation
Rabbit anti tyrosine hydroxylase EMD Millipore AB152 Whole mount staining
RNAlater Merck R0901-100ML RNA isolation (optional)
RNAscope Multiplex Fluorescent Reagent Kit v2 biotechne (ACD) 323100 RNAscope
RNAscope Probe-Mm-S100b-C2 biotechne (ACD) 431738-C2 RNAscope
RNAscope Probe-Mm-Tubb3 biotechne (ACD) 423391 RNAscope
Stainless steel beads 7 mm  Qiagen  69990 RNA isolation
Sudan black B Roth 0292.2 Whole mount staining
TaqMan Gene Expression Assay Cdkn1b (Mm00438168_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay Choline acetyltransferase (Mm01221880_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay MKi67 (Mm01278617_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay PTPCR (Mm01293577_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay S100b (Mm00485897_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay Tyrosin Hydroxylase (Mm00447557_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan mastermix Applied biosystems 4370074 Gene Expression analysis 
Tissue Lyser II Qiagen 85300 RNA isolation
Triton X-100 10% solution Sigma-Aldrich 93443-100ml Whole mount staining
Tween-20 Sigma-Aldrich P9416-100ML RNAscope
Wacom bamboo pen Wacom CTL-460/K Cell size measurements
Whatman prepleated qualitative filter paper, Grade 595 1/2 Sigma-Aldrich WHA10311647 Whole mount staining
Wheat Germ Agglutinin, Alexa Fluor 633 Conjugate Thermo Fisher Scientific W21404 RNAscope

References

  1. Goldberger, J. J., Arora, R., Buckley, U., Shivkumar, K. Autonomic nervous system dysfunction: JACC focus seminar. Journal of the American College of Cardiology. 73 (10), 1189-1206 (2019).
  2. Jänig, W. Neurocardiology: a neurobiologist’s perspective. The Journal of Physiology. 594 (14), 3955-3962 (2016).
  3. Meng, L., Shivkumar, K., Ajijola, O. Autonomic Regulation and Ventricular Arrhythmias. Current Treatment Options in Cardiovascular Medicine. 20 (5), (2018).
  4. Jungen, C., et al. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nature Communications. 8, 14155 (2017).
  5. Al-Khatib, S. M., et al. AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 138 (13), 272 (2018).
  6. Yusuf, S., Wittes, J., Friedman, L. Overview of results of randomized clinical trials in heart disease: I. treatments following myocardial infarction. JAMA: The Journal of the American Medical Association. 260 (14), 2088-2093 (1988).
  7. Sapp, J. L., et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. New England Journal of Medicine. 375 (2), 111-121 (2016).
  8. Yasunaga, K., Nosaka, S. Cardiac sympathetic nerves in rats: Anatomical and functional features. The Japanese Journal of Physiology. 29 (6), (1979).
  9. Pardini, B. J., Lund, D. D., Schmid, P. G. Organization of the sympathetic postganglionic innervation of the rat heart. Journal of the Autonomic Nervous System. 28 (3), 193-201 (1989).
  10. Meyer, C., Scherschel, K. Ventricular tachycardia in ischemic heart disease: The sympathetic heart and its scars. American Journal of Physiology – Heart and Circulatory Physiology. 312 (3), 549-551 (2017).
  11. Cao, J. M., et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 101 (16), 1960-1969 (2000).
  12. Ren, C., et al. Nerve sprouting suppresses myocardial Ito and IK1 channels and increases severity to ventricular fibrillation in rat. Autonomic Neuroscience: Basic and Clinical. 144 (1-2), 22-29 (2008).
  13. Zipes, D. P., et al. Treatment of ventricular arrhythmia by permanent atrial pacemaker and cardiac sympathectomy. Annals of Internal Medicine. 68 (3), 591-597 (1968).
  14. Kusumoto, F. M., et al. Systematic review for the 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 138 (13), (2018).
  15. Cronin, E. M., et al. 2019 HRS/EHRA/APHRS/LAHRS Expert Consensus Statement on Catheter Ablation of Ventricular Arrhythmias: Executive Summary. Heart Rhythm. , (2019).
  16. Vaseghi, M., et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long-term follow-up. Heart Rhythm. 11 (3), 360-366 (2014).
  17. Vaseghi, M., et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. Journal of the American College of Cardiology. 69 (25), 3070-3080 (2017).
  18. Ajijola, O. A., et al. Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI insight. 2 (18), 1-11 (2017).
  19. Rizzo, S., et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circulation: Arrhythmia and Electrophysiology. 7 (2), 224-229 (2014).
  20. Kanazawa, H., et al. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. Journal of Clinical Investigation. 120 (2), 408-421 (2010).
  21. Olivas, A., et al. Myocardial infarction causes transient cholinergic transdifferentiation of cardiac sympathetic nerves via gp130. Journal of Neuroscience. 36 (2), 479-488 (2016).
  22. Yu, L., et al. Optogenetic Modulation of Cardiac Sympathetic Nerve Activity to Prevent Ventricular Arrhythmias. Journal of the American College of Cardiology. 70 (22), 2778-2790 (2017).
  23. Jungen, C., et al. Increased arrhythmia susceptibility in type 2 diabetic mice related to dysregulation of ventricular sympathetic innervation. American Journal of Physiology – Heart and Circulatory Physiology. 317 (6), 1328-1341 (2019).
  24. Hedger, J. H., Webber, R. H. Anatomical study of the cervical sympathetic trunk and ganglia in the albino rat (Mus norvegicus albinus). Acta Anatomica. 96 (2), 206-217 (1976).
  25. Furlan, A., et al. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nature Neuroscience. 19 (10), 1331-1340 (2016).
  26. Al Khafaji, F. A. H., Anderson, P. N., Mitchell, J., Mayor, D. The permeability of the capsule of autonomic ganglia to horseradish peroxidase. Journal of Anatomy. 137 (4), 675-682 (1983).
  27. Armour, J. A., Murphy, D. A., Yuan, B. X., Macdonald, S., Hopkins, D. A. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anatomical Record. 247 (2), 289-298 (1997).
  28. Fedoroff, S., Richardson, A., Johnson, M. I. Primary Cultures of Sympathetic Ganglia. Protocols for Neural Cell Culture. (11051), 71-94 (2003).
  29. Scherschel, K., et al. Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Science Translational Medicine. 11 (493), 1-12 (2019).
  30. Sun, Y., et al. Sudan black B reduces autofluorescence in murine renal tissue. Archives of Pathology and Laboratory Medicine. 135 (10), 1335-1342 (2011).
  31. Alanentalo, T., et al. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nature Methods. 4 (1), 31-33 (2007).
  32. Kersigo, J., et al. A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA. Cell and Tissue Research. 374 (2), 251-262 (2018).
  33. Schindelin, J., et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  34. Bassil, G., et al. Pulmonary vein ganglia are remodeled in the diabetic heart. Journal of the American Heart Association. 7 (23), (2018).
  35. Ziegler, K. A., et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovascular Research. 114 (2), 291-299 (2018).
  36. Bayles, R. G., et al. Transcriptomic and neurochemical analysis of the stellate ganglia in mice highlights sex differences. Scientific Reports. 8 (1), 8963 (2018).
  37. Morales, M. A., et al. Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proceedings of the National Academy of Sciences of the United States of America. 92 (25), 11819-11823 (1995).
  38. Jimnez, B., Mora-Valladares, E., Zetina, M. E., Morales, M. A. Occurrence, co-occurrence and topographic distribution of choline acetyl transferase, met-enkephalin and neurotensin in the stellate ganglion of the cat. Synapse. 43 (3), 163-174 (2002).
  39. Ruit, K. G., Osborne, P. A., Schmidt, R. E., Johnson, E. M., Snider, W. D. Nerve growth factor regulates sympathetic ganglion cell morphology and survival in the adult mouse. Journal of Neuroscience. 10 (7), 2412-2419 (1990).
  40. Guo, J., et al. Involvement of P2Y 12 receptor of stellate ganglion in diabetic cardiovascular autonomic neuropathy. Purinergic Signalling. 14 (4), 345-357 (2018).
  41. Ajijola, O. A., et al. Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: Neuropeptide and morphologic changes. Heart Rhythm. 12 (5), 1027-1035 (2015).
  42. Hinrichs, S., et al. Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America. 115 (37), 8727-8736 (2018).
  43. Westermann, D., et al. Reduced degradation of the chemokine MCP-3 by matrix metalloproteinase-2 exacerbates myocardial inflammation in experimental viral cardiomyopathy. Circulation. 124 (19), 2082-2093 (2011).
  44. Johnsen, D., Olivas, A., Lang, B., Silver, J., Habecker, B. Disrupting protein tyrosine phosphatase σ does not prevent sympathetic axonal dieback following myocardial infarction. Experimental Neurology. 276, 1-4 (2016).
  45. Manousiouthakis, E., Mendez, M., Garner, M. C., Exertier, P., Makita, T. Venous endothelin guides sympathetic innervation of the developing mouse heart. Nature Communications. 5, 3918 (2014).
  46. Wink, J., et al. Human adult cardiac autonomic innervation: Controversies in anatomical knowledge and relevance for cardiac neuromodulation. Autonomic Neuroscience. 227, 102674 (2020).
  47. Kummer, W., Fischer, A., Kurkowski, R., Heym, C. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neurosciences. 49 (3), 715-737 (1992).
  48. Schäfer, M. K. H., Schütz, B., Weihe, E., Eiden, L. E. Target-independent cholinergic differentiation in the rat sympathetic nervous system. Proceedings of the National Academy of Sciences of the United States of America. 94 (8), 4149-4154 (1997).
  49. Chen, Y., et al. Effect of a Stellate Ganglion block on acute lung injury in septic rats. Inflammation. 41 (5), 1601-1609 (2018).
  50. Lipov, E. G., et al. Effects of stellate-ganglion block on hot flushes and night awakenings in survivors of breast cancer: a pilot study. The Lancet Oncology. 9 (6), 523-532 (2008).
  51. Mo, N., Wallis, D. I., Watson, A. Properties of putative cardiac and non-cardiac neurones in the rat stellate ganglion. Journal of the Autonomic Nervous System. 47 (1-2), 7-22 (1994).
  52. Rajendran, P. S., et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nature Communications. 10 (1), 1-13 (2019).
  53. Hanani, M. Satellite glial cells in sympathetic and parasympathetic ganglia: In search of function. Brain Research Reviews. 64 (2), 304-327 (2010).
  54. Larsen, H. E., Lefkimmiatis, K., Paterson, D. J. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease. Scientific Reports. 6, 1-11 (2016).
  55. Hasan, W., et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Research. 1124 (1), 142-154 (2006).
  56. Lorentz, C. U., et al. Heterogeneous ventricular sympathetic innervation, altered β-adrenergic receptor expression, and rhythm instability in mice lacking the p75 neurotrophin receptor. American Journal of Physiology – Heart and Circulatory Physiology. 298 (6), 1652-1660 (2010).
check_url/fr/62026?article_type=t

Play Video

Citer Cet Article
Scherschel, K., Bräuninger, H., Glufke, K., Jungen, C., Klöcker, N., Meyer, C. Location, Dissection, and Analysis of the Murine Stellate Ganglion. J. Vis. Exp. (166), e62026, doi:10.3791/62026 (2020).

View Video